mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
deal the diffusion prior problem yet another blow
This commit is contained in:
@@ -743,11 +743,18 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
num_timesteps = None,
|
||||
num_time_embeds = 1,
|
||||
num_image_embeds = 1,
|
||||
num_text_embeds = 1,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.num_time_embeds = num_time_embeds
|
||||
self.num_image_embeds = num_image_embeds
|
||||
self.num_text_embeds = num_text_embeds
|
||||
|
||||
self.to_text_embeds = nn.Sequential(
|
||||
nn.Linear(dim, dim * num_text_embeds) if num_text_embeds > 1 else nn.Identity(),
|
||||
Rearrange('b (n d) -> b n d', n = num_text_embeds)
|
||||
)
|
||||
|
||||
self.to_time_embeds = nn.Sequential(
|
||||
nn.Embedding(num_timesteps, dim * num_time_embeds) if exists(num_timesteps) else nn.Sequential(SinusoidalPosEmb(dim), MLP(dim, dim * num_time_embeds)), # also offer a continuous version of timestep embeddings, with a 2 layer MLP
|
||||
@@ -755,7 +762,7 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
)
|
||||
|
||||
self.to_image_embeds = nn.Sequential(
|
||||
nn.Linear(dim, dim * num_image_embeds),
|
||||
nn.Linear(dim, dim * num_image_embeds) if num_image_embeds > 1 else nn.Identity(),
|
||||
Rearrange('b (n d) -> b n d', n = num_image_embeds)
|
||||
)
|
||||
|
||||
@@ -788,12 +795,12 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
):
|
||||
batch, dim, device, dtype = *image_embed.shape, image_embed.device, image_embed.dtype
|
||||
|
||||
num_time_embeds, num_image_embeds = self.num_time_embeds, self.num_image_embeds
|
||||
num_time_embeds, num_image_embeds, num_text_embeds = self.num_time_embeds, self.num_image_embeds, self.num_text_embeds
|
||||
|
||||
# in section 2.2, last paragraph
|
||||
# "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction"
|
||||
|
||||
text_embed = rearrange(text_embed, 'b d -> b 1 d')
|
||||
text_embed = self.to_text_embeds(text_embed)
|
||||
image_embed = self.to_image_embeds(image_embed)
|
||||
|
||||
# make text encodings optional
|
||||
@@ -814,6 +821,7 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
|
||||
# whether text embedding is masked or not depends on the classifier free guidance conditional masking
|
||||
|
||||
keep_mask = repeat(keep_mask, 'b 1 -> b n', n = num_text_embeds)
|
||||
mask = torch.cat((mask, keep_mask), dim = 1)
|
||||
|
||||
# whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different)
|
||||
|
||||
Reference in New Issue
Block a user