Implemented the wandb tracker (#106)

Added a base_path parameter to all trackers for storing any local information they need to
This commit is contained in:
Aidan Dempster
2022-05-20 19:39:23 -04:00
committed by GitHub
parent c85e0d5c35
commit e0524a6aff

View File

@@ -1,4 +1,6 @@
import os
from itertools import zip_longest
from enum import Enum
import torch
from torch import nn
@@ -7,11 +9,26 @@ from torch import nn
def exists(val):
return val is not None
def load_wandb_state_dict(run_path, file_path, **kwargs):
try:
import wandb
except ImportError as e:
print('`pip install wandb` to use the wandb recall function')
raise e
file_reference = wandb.restore(file_path, run_path=run_path)
return torch.load(file_reference.name)
def load_local_state_dict(file_path, **kwargs):
return torch.load(file_path)
# base class
class BaseTracker(nn.Module):
def __init__(self):
def __init__(self, data_path):
super().__init__()
assert data_path is not None, "Tracker must have a data_path to save local content"
self.data_path = os.path.abspath(data_path)
os.makedirs(self.data_path, exist_ok=True)
def init(self, config, **kwargs):
raise NotImplementedError
@@ -19,6 +36,27 @@ class BaseTracker(nn.Module):
def log(self, log, **kwargs):
raise NotImplementedError
def log_images(self, images, **kwargs):
raise NotImplementedError
def save_state_dict(self, state_dict, relative_path, **kwargs):
raise NotImplementedError
def recall_state_dict(self, recall_source, *args, **kwargs):
"""
Loads a state dict from any source.
Since a user may wish to load a model from a different source than their own tracker (i.e. tracking using wandb but recalling from disk),
this should not be linked to any individual tracker.
"""
# TODO: Pull this into a dict or something similar so that we can add more sources without having a massive switch statement
if recall_source == 'wandb':
return load_wandb_state_dict(*args, **kwargs)
elif recall_source == 'local':
return load_local_state_dict(*args, **kwargs)
else:
raise ValueError('`recall_source` must be one of `wandb` or `local`')
# basic stdout class
class ConsoleTracker(BaseTracker):
@@ -28,11 +66,20 @@ class ConsoleTracker(BaseTracker):
def log(self, log, **kwargs):
print(log)
def log_images(self, images, **kwargs):
"""
Currently, do nothing with console logged images
"""
pass
def save_state_dict(self, state_dict, relative_path, **kwargs):
torch.save(state_dict, os.path.join(self.data_path, relative_path))
# basic wandb class
class WandbTracker(BaseTracker):
def __init__(self):
super().__init__()
def __init__(self, data_path):
super().__init__(data_path)
try:
import wandb
except ImportError as e:
@@ -45,5 +92,22 @@ class WandbTracker(BaseTracker):
def init(self, **config):
self.wandb.init(**config)
def log(self, log, **kwargs):
def log(self, log, verbose=False, **kwargs):
if verbose:
print(log)
self.wandb.log(log, **kwargs)
def log_images(self, images, captions=[], image_section="images", **kwargs):
"""
Takes a tensor of images and a list of captions and logs them to wandb.
"""
wandb_images = [self.wandb.Image(image, caption=caption) for image, caption in zip_longest(images, captions)]
self.log({ image_section: wandb_images }, **kwargs)
def save_state_dict(self, state_dict, relative_path, **kwargs):
"""
Saves a state_dict to disk and uploads it
"""
full_path = os.path.join(self.data_path, relative_path)
torch.save(state_dict, full_path)
self.wandb.save(full_path, base_path=self.data_path) # Upload and keep relative to data_path