Fixed issues with clip and deepspeed fp16

Also more more general compatibility fixes
This commit is contained in:
Aidan
2022-07-29 16:57:27 +00:00
parent 083508ff8e
commit cbaadb6931
3 changed files with 40 additions and 24 deletions

View File

@@ -241,7 +241,7 @@ class DecoderConfig(BaseModel):
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
channels: int = 3
timesteps: int = 1000
sample_timesteps: Optional[SingularOrIterable[int]] = None
sample_timesteps: Optional[SingularOrIterable[Optional[int]]] = None
loss_type: str = 'l2'
beta_schedule: ListOrTuple[str] = None # None means all cosine
learned_variance: SingularOrIterable[bool] = True

View File

@@ -519,7 +519,7 @@ class DecoderTrainer(nn.Module):
clip = decoder.clip
clip.to(precision_type)
decoder, *optimizers = list(self.accelerator.prepare(decoder, *optimizers))
decoder, train_dataloader, *optimizers = list(self.accelerator.prepare(decoder, dataloaders['train'], *optimizers))
self.decoder = decoder

View File

@@ -134,7 +134,7 @@ def get_example_data(dataloader, device, n=5):
break
return list(zip(images[:n], img_embeddings[:n], text_embeddings[:n], captions[:n]))
def generate_samples(trainer, example_data, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend="", match_image_size=True):
def generate_samples(trainer, example_data, clip=None, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend="", match_image_size=True):
"""
Takes example data and generates images from the embeddings
Returns three lists: real images, generated images, and captions
@@ -144,7 +144,9 @@ def generate_samples(trainer, example_data, start_unet=1, end_unet=None, conditi
if img_embeddings[0] is None:
# Generate image embeddings from clip
imgs_tensor = torch.stack(real_images)
img_embeddings, *_ = trainer.embed_image(imgs_tensor)
assert clip is not None, "clip is None, but img_embeddings is None"
imgs_tensor.to(device=device)
img_embeddings, img_encoding = clip.embed_image(imgs_tensor)
sample_params["image_embed"] = img_embeddings
else:
# Then we are using precomputed image embeddings
@@ -153,8 +155,10 @@ def generate_samples(trainer, example_data, start_unet=1, end_unet=None, conditi
if condition_on_text_encodings:
if text_embeddings[0] is None:
# Generate text embeddings from text
assert clip is not None, "clip is None, but text_embeddings is None"
tokenized_texts = tokenize(txts, truncate=True)
sample_params["text"] = tokenized_texts
text_embed, text_encodings = clip.embed_text(tokenized_texts)
sample_params["text_encodings"] = text_encodings
else:
# Then we are using precomputed text embeddings
text_embeddings = torch.stack(text_embeddings)
@@ -166,7 +170,7 @@ def generate_samples(trainer, example_data, start_unet=1, end_unet=None, conditi
sample_params["image"] = torch.stack(real_images)
if device is not None:
sample_params["_device"] = device
samples = trainer.sample(**sample_params)
samples = trainer.sample(**sample_params, _cast_deepspeed_precision=False) # At sampling time we don't want to cast to FP16
generated_images = list(samples)
captions = [text_prepend + txt for txt in txts]
if match_image_size:
@@ -174,15 +178,15 @@ def generate_samples(trainer, example_data, start_unet=1, end_unet=None, conditi
real_images = [resize_image_to(image, generated_image_size, clamp_range=(0, 1)) for image in real_images]
return real_images, generated_images, captions
def generate_grid_samples(trainer, examples, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend=""):
def generate_grid_samples(trainer, examples, clip=None, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend=""):
"""
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
"""
real_images, generated_images, captions = generate_samples(trainer, examples, start_unet, end_unet, condition_on_text_encodings, cond_scale, device, text_prepend)
real_images, generated_images, captions = generate_samples(trainer, examples, clip, start_unet, end_unet, condition_on_text_encodings, cond_scale, device, text_prepend)
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
return grid_images, captions
def evaluate_trainer(trainer, dataloader, device, start_unet, end_unet, condition_on_text_encodings=False, cond_scale=1.0, inference_device=None, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
def evaluate_trainer(trainer, dataloader, device, start_unet, end_unet, clip=None, condition_on_text_encodings=False, cond_scale=1.0, inference_device=None, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
"""
Computes evaluation metrics for the decoder
"""
@@ -192,7 +196,7 @@ def evaluate_trainer(trainer, dataloader, device, start_unet, end_unet, conditi
if len(examples) == 0:
print("No data to evaluate. Check that your dataloader has shards.")
return metrics
real_images, generated_images, captions = generate_samples(trainer, examples, start_unet, end_unet, condition_on_text_encodings, cond_scale, inference_device)
real_images, generated_images, captions = generate_samples(trainer, examples, clip, start_unet, end_unet, condition_on_text_encodings, cond_scale, inference_device)
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
# Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8
@@ -265,6 +269,7 @@ def train(
accelerator: Accelerator,
tracker: Tracker,
inference_device,
clip=None,
evaluate_config=None,
epoch_samples = None, # If the training dataset is resampling, we have to manually stop an epoch
validation_samples = None,
@@ -371,15 +376,19 @@ def train(
forward_params['image_embed'] = img_emb
else:
# Forward pass automatically generates embedding
pass
assert clip is not None
img_embed, img_encoding = clip.embed_image(img)
forward_params['image_embed'] = img_embed
if condition_on_text_encodings:
if has_text_embedding:
forward_params['text_encodings'] = text_emb
else:
# Then we need to pass the text instead
tokenized_texts = tokenize(txt, truncate=True)
assert clip is not None
tokenized_texts = tokenize(txt, truncate=True).to(inference_device)
assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})"
forward_params['text'] = tokenized_texts
text_embed, text_encodings = clip.embed_text(tokenized_texts)
forward_params['text_encodings'] = text_encodings
loss = trainer.forward(img, **forward_params, unet_number=unet, _device=inference_device)
trainer.update(unet_number=unet)
unet_losses_tensor[i % TRAIN_CALC_LOSS_EVERY_ITERS, unet-1] = loss
@@ -419,7 +428,7 @@ def train(
save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, samples_seen)
if exists(n_sample_images) and n_sample_images > 0:
trainer.eval()
train_images, train_captions = generate_grid_samples(trainer, train_example_data, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, clip, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
if epoch_samples is not None and sample >= epoch_samples:
@@ -462,15 +471,19 @@ def train(
forward_params['image_embed'] = img_emb.float()
else:
# Forward pass automatically generates embedding
pass
assert clip is not None
img_embed, img_encoding = clip.embed_image(img)
forward_params['image_embed'] = img_embed
if condition_on_text_encodings:
if has_text_embedding:
forward_params['text_encodings'] = text_emb.float()
else:
# Then we need to pass the text instead
assert clip is not None
tokenized_texts = tokenize(txt, truncate=True)
assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})"
forward_params['text'] = tokenized_texts
text_embed, text_encodings = clip.embed_text(tokenized_texts)
forward_params['text_encodings'] = text_encodings
loss = trainer.forward(img.float(), **forward_params, unet_number=unet, _device=inference_device)
average_val_loss_tensor[0, unet-1] += loss
@@ -498,7 +511,7 @@ def train(
if next_task == 'eval':
if exists(evaluate_config):
accelerator.print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, inference_device=inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale)
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, clip=clip, inference_device=inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale)
if is_master:
tracker.log(evaluation, step=step())
next_task = 'sample'
@@ -509,8 +522,8 @@ def train(
# Generate examples and save the model if we are the master
# Generate sample images
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
test_images, test_captions = generate_grid_samples(trainer, test_example_data, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Test: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
test_images, test_captions = generate_grid_samples(trainer, test_example_data, clip, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Test: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, clip, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step())
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
@@ -532,6 +545,7 @@ def create_tracker(accelerator: Accelerator, config: TrainDecoderConfig, config_
"NumProcesses": accelerator.num_processes,
"MixedPrecision": accelerator.mixed_precision
}
accelerator.wait_for_everyone() # If nodes arrive at this point at different times they might try to autoresume the current run which makes no sense and will cause errors
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
tracker.save_config(config_path, config_name='decoder_config.json')
tracker.add_save_metadata(state_dict_key='config', metadata=config.dict())
@@ -556,10 +570,6 @@ def initialize_training(config: TrainDecoderConfig, config_path):
if accelerator.mixed_precision == "fp16" and accelerator.distributed_type == accelerate_dataclasses.DistributedType.DEEPSPEED and config.decoder.learned_variance:
raise ValueError("DeepSpeed fp16 mode does not support learned variance")
if accelerator.process_index != accelerator.local_process_index and accelerator.distributed_type == accelerate_dataclasses.DistributedType.DEEPSPEED:
# This is an invalid configuration until we figure out how to handle this
raise ValueError("DeepSpeed does not support multi-node distributed training")
# Set up data
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
world_size = accelerator.num_processes
@@ -579,6 +589,11 @@ def initialize_training(config: TrainDecoderConfig, config_path):
seed = config.seed,
)
# If clip is in the model, we need to remove it for compatibility with deepspeed
clip = None
if config.decoder.clip is not None:
clip = config.decoder.clip.create() # Of course we keep it to use it during training, just not in the decoder as that causes issues
config.decoder.clip = None
# Create the decoder model and print basic info
decoder = config.decoder.create()
get_num_parameters = lambda model, only_training=False: sum(p.numel() for p in model.parameters() if (p.requires_grad or not only_training))
@@ -590,7 +605,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
has_text_embeddings = config.data.text_embeddings_url is not None
conditioning_on_text = any([unet.cond_on_text_encodings for unet in config.decoder.unets])
has_clip_model = config.decoder.clip is not None
has_clip_model = clip is not None
data_source_string = ""
if has_img_embeddings:
@@ -615,6 +630,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
accelerator.print(f"Unet {i} has {get_num_parameters(unet)} total; {get_num_parameters(unet, only_training=True)} training")
train(dataloaders, decoder, accelerator,
clip=clip,
tracker=tracker,
inference_device=accelerator.device,
evaluate_config=config.evaluate,