mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
make training splits into its own pydantic base model, validate it sums to 1, make decoder script cleaner
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
from torchvision import transforms as T
|
||||
from pydantic import BaseModel, validator
|
||||
from pydantic import BaseModel, validator, root_validator
|
||||
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
|
||||
|
||||
def exists(val):
|
||||
@@ -38,6 +38,17 @@ class DecoderConfig(BaseModel):
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
||||
class TrainSplitConfig(BaseModel):
|
||||
train: float = 0.75
|
||||
val: float = 0.15
|
||||
test: float = 0.1
|
||||
|
||||
@root_validator
|
||||
def validate_all(cls, fields):
|
||||
if sum([*fields.values()]) != 1.:
|
||||
raise ValueError(f'{fields.keys()} must sum to 1.0')
|
||||
return fields
|
||||
|
||||
class DecoderDataConfig(BaseModel):
|
||||
webdataset_base_url: str # path to a webdataset with jpg images
|
||||
embeddings_url: str # path to .npy files with embeddings
|
||||
@@ -47,11 +58,7 @@ class DecoderDataConfig(BaseModel):
|
||||
end_shard: int = 9999999
|
||||
shard_width: int = 6
|
||||
index_width: int = 4
|
||||
splits: Dict[str, float] = {
|
||||
'train': 0.75,
|
||||
'val': 0.15,
|
||||
'test': 0.1
|
||||
}
|
||||
splits: TrainSplitConfig
|
||||
shuffle_train: bool = True
|
||||
resample_train: bool = False
|
||||
preprocessing: Dict[str, Any] = {'ToTensor': True}
|
||||
|
||||
2
setup.py
2
setup.py
@@ -10,7 +10,7 @@ setup(
|
||||
'dream = dalle2_pytorch.cli:dream'
|
||||
],
|
||||
},
|
||||
version = '0.4.0',
|
||||
version = '0.4.1',
|
||||
license='MIT',
|
||||
description = 'DALL-E 2',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -422,9 +422,9 @@ def initialize_training(config):
|
||||
dataloaders = create_dataloaders (
|
||||
available_shards=all_shards,
|
||||
img_preproc = config.img_preproc,
|
||||
train_prop = config.data["splits"]["train"],
|
||||
val_prop = config.data["splits"]["val"],
|
||||
test_prop = config.data["splits"]["test"],
|
||||
train_prop = config.data.splits.train,
|
||||
val_prop = config.data.splits.val,
|
||||
test_prop = config.data.splits.test,
|
||||
n_sample_images=config.train.n_sample_images,
|
||||
**config.data.dict()
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user