mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
make memory efficient unet design from imagen toggle-able
This commit is contained in:
@@ -1352,6 +1352,7 @@ class Unet(nn.Module):
|
|||||||
init_cross_embed_kernel_sizes = (3, 7, 15),
|
init_cross_embed_kernel_sizes = (3, 7, 15),
|
||||||
cross_embed_downsample = False,
|
cross_embed_downsample = False,
|
||||||
cross_embed_downsample_kernel_sizes = (2, 4),
|
cross_embed_downsample_kernel_sizes = (2, 4),
|
||||||
|
memory_efficient = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@@ -1462,10 +1463,11 @@ class Unet(nn.Module):
|
|||||||
layer_cond_dim = cond_dim if not is_first else None
|
layer_cond_dim = cond_dim if not is_first else None
|
||||||
|
|
||||||
self.downs.append(nn.ModuleList([
|
self.downs.append(nn.ModuleList([
|
||||||
downsample_klass(dim_in, dim_out = dim_out),
|
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
|
||||||
ResnetBlock(dim_out, dim_out, time_cond_dim = time_cond_dim, groups = groups),
|
ResnetBlock(dim_out if memory_efficient else dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
|
||||||
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
|
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
|
||||||
nn.ModuleList([ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
nn.ModuleList([ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||||
|
downsample_klass(dim_out) if not is_last and not memory_efficient else None
|
||||||
]))
|
]))
|
||||||
|
|
||||||
mid_dim = dims[-1]
|
mid_dim = dims[-1]
|
||||||
@@ -1474,7 +1476,9 @@ class Unet(nn.Module):
|
|||||||
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
|
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
|
||||||
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||||
|
|
||||||
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks))):
|
up_in_out_slice = slice(1 if not memory_efficient else None, None)
|
||||||
|
|
||||||
|
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(reversed(in_out[up_in_out_slice]), reversed(resnet_groups), reversed(num_resnet_blocks))):
|
||||||
is_last = ind >= (num_resolutions - 2)
|
is_last = ind >= (num_resolutions - 2)
|
||||||
layer_cond_dim = cond_dim if not is_last else None
|
layer_cond_dim = cond_dim if not is_last else None
|
||||||
|
|
||||||
@@ -1655,8 +1659,10 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
hiddens = []
|
hiddens = []
|
||||||
|
|
||||||
for downsample, init_block, sparse_attn, resnet_blocks in self.downs:
|
for pre_downsample, init_block, sparse_attn, resnet_blocks, post_downsample in self.downs:
|
||||||
x = downsample(x)
|
if exists(pre_downsample):
|
||||||
|
x = pre_downsample(x)
|
||||||
|
|
||||||
x = init_block(x, c, t)
|
x = init_block(x, c, t)
|
||||||
x = sparse_attn(x)
|
x = sparse_attn(x)
|
||||||
|
|
||||||
@@ -1665,6 +1671,9 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
hiddens.append(x)
|
hiddens.append(x)
|
||||||
|
|
||||||
|
if exists(post_downsample):
|
||||||
|
x = post_downsample(x)
|
||||||
|
|
||||||
x = self.mid_block1(x, mid_c, t)
|
x = self.mid_block1(x, mid_c, t)
|
||||||
|
|
||||||
if exists(self.mid_attn):
|
if exists(self.mid_attn):
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '0.8.0'
|
__version__ = '0.8.1'
|
||||||
|
|||||||
Reference in New Issue
Block a user