mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
simplify more
This commit is contained in:
@@ -75,15 +75,16 @@ def split_args_and_kwargs(x, *args, split_size = None, **kwargs):
|
||||
dict_keys = kwargs.keys()
|
||||
all_args = (x, *args, *kwargs.values())
|
||||
len_all_args = len(all_args)
|
||||
split_index = len_all_args - dict_len
|
||||
split_kwargs_index = len_all_args - dict_len
|
||||
|
||||
split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * chunk_size) for arg in all_args]
|
||||
chunk_sizes = tuple(map(len, split_all_args[0]))
|
||||
|
||||
for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)):
|
||||
chunked_args, chunked_kwargs_values = chunked_all_args[:split_index], chunked_all_args[split_index:]
|
||||
chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:]
|
||||
chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values)))
|
||||
yield chunk_size, (chunked_args, chunked_kwargs)
|
||||
chunk_size_frac = chunk_size / batch_size
|
||||
yield chunk_size_frac, (chunked_args, chunked_kwargs)
|
||||
|
||||
# print helpers
|
||||
|
||||
@@ -258,20 +259,17 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
max_batch_size = None,
|
||||
**kwargs
|
||||
):
|
||||
batch_size = x.shape[0]
|
||||
total_samples = 0
|
||||
total_loss = 0.
|
||||
|
||||
for chunk_size, (chunked_args, chunked_kwargs) in split_args_and_kwargs(x, *args, split_size = max_batch_size, **kwargs):
|
||||
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(x, *args, split_size = max_batch_size, **kwargs):
|
||||
with autocast(enabled = self.amp):
|
||||
loss = self.diffusion_prior(*chunked_args, **chunked_kwargs)
|
||||
loss = loss * chunk_size_frac
|
||||
|
||||
total_loss += loss.item() * chunk_size
|
||||
total_samples += chunk_size
|
||||
total_loss += loss.item()
|
||||
self.scaler.scale(loss).backward()
|
||||
|
||||
self.scaler.scale(loss * (chunk_size / batch_size)).backward()
|
||||
|
||||
return total_loss / total_samples
|
||||
return total_loss
|
||||
|
||||
# decoder trainer
|
||||
|
||||
@@ -385,17 +383,14 @@ class DecoderTrainer(nn.Module):
|
||||
max_batch_size = None,
|
||||
**kwargs
|
||||
):
|
||||
batch_size = x.shape[0]
|
||||
total_samples = 0
|
||||
total_loss = 0.
|
||||
|
||||
for chunk_size, (chunked_args, chunked_kwargs) in split_args_and_kwargs(x, split_size = max_batch_size, **kwargs):
|
||||
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(x, split_size = max_batch_size, **kwargs):
|
||||
with autocast(enabled = self.amp):
|
||||
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
|
||||
loss = loss * chunk_size_frac
|
||||
|
||||
total_loss += loss.item() * chunk_size
|
||||
total_samples += chunk_size
|
||||
total_loss += loss.item()
|
||||
self.scale(loss, unet_number = unet_number).backward()
|
||||
|
||||
self.scale(loss * (chunk_size / batch_size), unet_number = unet_number).backward()
|
||||
|
||||
return total_loss / total_samples
|
||||
return total_loss
|
||||
|
||||
Reference in New Issue
Block a user