add sparse attention layers in between convnext blocks in unet (grid like attention, used in mobilevit, maxvit [bytedance ai], as well as a growing number of attention-based GANs)

This commit is contained in:
Phil Wang
2022-04-19 09:48:27 -07:00
parent 55bdcb98b9
commit a35c309b5f
3 changed files with 33 additions and 4 deletions

View File

@@ -409,9 +409,10 @@ Offer training wrappers
- [x] augment unet so that it can also be conditioned on text encodings (although in paper they hinted this didn't make much a difference)
- [x] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)
- [x] build the cascading ddpm by having Decoder class manage multiple unets at different resolutions
- [x] add efficient attention in unet
- [ ] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
- [ ] build out latent diffusion architecture in separate file, as it is not faithful to dalle-2 (but offer it as as setting)
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, add efficient attention (conditional on resolution), port all learnings over to https://github.com/lucidrains/x-unet
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
- [ ] train on a toy task, offer in colab
## Citations
@@ -461,4 +462,12 @@ Offer training wrappers
}
```
```bibtex
@inproceedings{Tu2022MaxViTMV,
title = {MaxViT: Multi-Axis Vision Transformer},
author = {Zhe-Wei Tu and Hossein Talebi and Han Zhang and Feng Yang and Peyman Milanfar and Alan Conrad Bovik and Yinxiao Li},
year = {2022}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - Yang Song's <a href="https://arxiv.org/abs/2011.13456">paper</a>

View File

@@ -798,6 +798,20 @@ class CrossAttention(nn.Module):
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class GridAttention(nn.Module):
def __init__(self, *args, window_size = 8, **kwargs):
super().__init__()
self.window_size = window_size
self.attn = Attention(*args, **kwargs)
def forward(self, x):
h, w = x.shape[-2:]
wsz = self.window_size
x = rearrange(x, 'b c (w1 h) (w2 w) -> (b h w) (w1 w2) c', w1 = wsz, w2 = wsz)
out = self.attn(x)
out = rearrange(out, '(b h w) (w1 w2) c -> b c (w1 h) (w2 w)', w1 = wsz, w2 = wsz, h = h // wsz, w = w // wsz)
return out
class Unet(nn.Module):
def __init__(
self,
@@ -813,6 +827,8 @@ class Unet(nn.Module):
lowres_cond_upsample_mode = 'bilinear',
blur_sigma = 0.1,
blur_kernel_size = 3,
sparse_attn = False,
sparse_attn_window = 8, # window size for sparse attention
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
):
super().__init__()
@@ -875,6 +891,7 @@ class Unet(nn.Module):
self.downs.append(nn.ModuleList([
ConvNextBlock(dim_in, dim_out, norm = ind != 0),
Residual(GridAttention(dim_out, window_size = sparse_attn_window)) if sparse_attn else nn.Identity(),
ConvNextBlock(dim_out, dim_out, cond_dim = layer_cond_dim),
Downsample(dim_out) if not is_last else nn.Identity()
]))
@@ -891,6 +908,7 @@ class Unet(nn.Module):
self.ups.append(nn.ModuleList([
ConvNextBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim),
Residual(GridAttention(dim_in, window_size = sparse_attn_window)) if sparse_attn else nn.Identity(),
ConvNextBlock(dim_in, dim_in, cond_dim = layer_cond_dim),
Upsample(dim_in)
]))
@@ -995,8 +1013,9 @@ class Unet(nn.Module):
hiddens = []
for convnext, convnext2, downsample in self.downs:
for convnext, sparse_attn, convnext2, downsample in self.downs:
x = convnext(x, c)
x = sparse_attn(x)
x = convnext2(x, c)
hiddens.append(x)
x = downsample(x)
@@ -1008,9 +1027,10 @@ class Unet(nn.Module):
x = self.mid_block2(x, mid_c)
for convnext, convnext2, upsample in self.ups:
for convnext, sparse_attn, convnext2, upsample in self.ups:
x = torch.cat((x, hiddens.pop()), dim=1)
x = convnext(x, c)
x = sparse_attn(x)
x = convnext2(x, c)
x = upsample(x)

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.24',
version = '0.0.25',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',