mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
take care of mixed precision, and make gradient accumulation do-able externally
This commit is contained in:
@@ -811,7 +811,7 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
- [x] use inheritance just this once for sharing logic between decoder and prior network ddpms
|
- [x] use inheritance just this once for sharing logic between decoder and prior network ddpms
|
||||||
- [x] bring in vit-vqgan https://arxiv.org/abs/2110.04627 for the latent diffusion
|
- [x] bring in vit-vqgan https://arxiv.org/abs/2110.04627 for the latent diffusion
|
||||||
- [x] abstract interface for CLIP adapter class, so other CLIPs can be brought in
|
- [x] abstract interface for CLIP adapter class, so other CLIPs can be brought in
|
||||||
- [ ] take care of mixed precision as well as gradient accumulation within decoder trainer
|
- [x] take care of mixed precision as well as gradient accumulation within decoder trainer
|
||||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
|
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
|
||||||
- [ ] copy the cascading ddpm code to a separate repo (perhaps https://github.com/lucidrains/denoising-diffusion-pytorch) as the main contribution of dalle2 really is just the prior network
|
- [ ] copy the cascading ddpm code to a separate repo (perhaps https://github.com/lucidrains/denoising-diffusion-pytorch) as the main contribution of dalle2 really is just the prior network
|
||||||
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
|
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
|
||||||
|
|||||||
@@ -3,6 +3,7 @@ from functools import partial
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
from torch.cuda.amp import autocast, GradScaler
|
||||||
|
|
||||||
from dalle2_pytorch.dalle2_pytorch import Decoder
|
from dalle2_pytorch.dalle2_pytorch import Decoder
|
||||||
from dalle2_pytorch.optimizer import get_optimizer
|
from dalle2_pytorch.optimizer import get_optimizer
|
||||||
@@ -98,6 +99,7 @@ class DecoderTrainer(nn.Module):
|
|||||||
lr = 3e-4,
|
lr = 3e-4,
|
||||||
wd = 1e-2,
|
wd = 1e-2,
|
||||||
max_grad_norm = None,
|
max_grad_norm = None,
|
||||||
|
amp = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@@ -115,6 +117,8 @@ class DecoderTrainer(nn.Module):
|
|||||||
|
|
||||||
self.ema_unets = nn.ModuleList([])
|
self.ema_unets = nn.ModuleList([])
|
||||||
|
|
||||||
|
self.amp = amp
|
||||||
|
|
||||||
# be able to finely customize learning rate, weight decay
|
# be able to finely customize learning rate, weight decay
|
||||||
# per unet
|
# per unet
|
||||||
|
|
||||||
@@ -133,10 +137,19 @@ class DecoderTrainer(nn.Module):
|
|||||||
if self.use_ema:
|
if self.use_ema:
|
||||||
self.ema_unets.append(EMA(unet, **ema_kwargs))
|
self.ema_unets.append(EMA(unet, **ema_kwargs))
|
||||||
|
|
||||||
|
scaler = GradScaler(enabled = amp)
|
||||||
|
setattr(self, f'scaler{ind}', scaler)
|
||||||
|
|
||||||
# gradient clipping if needed
|
# gradient clipping if needed
|
||||||
|
|
||||||
self.max_grad_norm = max_grad_norm
|
self.max_grad_norm = max_grad_norm
|
||||||
|
|
||||||
|
def scale(self, loss, *, unet_number):
|
||||||
|
assert 1 <= unet_number <= self.num_unets
|
||||||
|
index = unet_number - 1
|
||||||
|
scaler = getattr(self, f'scaler{index}')
|
||||||
|
return scaler.scale(loss)
|
||||||
|
|
||||||
def update(self, unet_number):
|
def update(self, unet_number):
|
||||||
assert 1 <= unet_number <= self.num_unets
|
assert 1 <= unet_number <= self.num_unets
|
||||||
index = unet_number - 1
|
index = unet_number - 1
|
||||||
@@ -146,7 +159,10 @@ class DecoderTrainer(nn.Module):
|
|||||||
nn.utils.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
|
nn.utils.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
|
||||||
|
|
||||||
optimizer = getattr(self, f'optim{index}')
|
optimizer = getattr(self, f'optim{index}')
|
||||||
optimizer.step()
|
scaler = getattr(self, f'scaler{index}')
|
||||||
|
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
|
|
||||||
if self.use_ema:
|
if self.use_ema:
|
||||||
@@ -154,4 +170,6 @@ class DecoderTrainer(nn.Module):
|
|||||||
ema_unet.update()
|
ema_unet.update()
|
||||||
|
|
||||||
def forward(self, x, *, unet_number, **kwargs):
|
def forward(self, x, *, unet_number, **kwargs):
|
||||||
return self.decoder(x, unet_number = unet_number, **kwargs)
|
with autocast(enabled = self.amp):
|
||||||
|
loss = self.decoder(x, unet_number = unet_number, **kwargs)
|
||||||
|
return self.scale(loss, unet_number = unet_number)
|
||||||
|
|||||||
Reference in New Issue
Block a user