use inference mode whenever possible, cleanup

This commit is contained in:
Phil Wang
2022-05-04 15:24:57 -07:00
parent a6bf8ddef6
commit 9773f10d6c
2 changed files with 8 additions and 14 deletions

View File

@@ -805,7 +805,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad() @torch.inference_mode()
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False): def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised) model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised)
@@ -814,7 +814,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad() @torch.inference_mode()
def p_sample_loop(self, shape, text_cond): def p_sample_loop(self, shape, text_cond):
device = self.betas.device device = self.betas.device
@@ -842,7 +842,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
loss = self.loss_fn(pred, target) loss = self.loss_fn(pred, target)
return loss return loss
@torch.no_grad() @torch.inference_mode()
@eval_decorator @eval_decorator
def sample(self, text, num_samples_per_batch = 2): def sample(self, text, num_samples_per_batch = 2):
# in the paper, what they did was # in the paper, what they did was
@@ -1639,12 +1639,6 @@ class Decoder(BaseGaussianDiffusion):
yield yield
unet.cpu() unet.cpu()
@torch.no_grad()
def get_image_embed(self, image):
image_embed, _ = self.clip.embed_image(image)
return image_embed
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, cond_scale = 1.): def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, cond_scale = 1.):
pred = unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img) pred = unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img)
@@ -1659,7 +1653,7 @@ class Decoder(BaseGaussianDiffusion):
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad() @torch.inference_mode()
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, clip_denoised = True, repeat_noise = False): def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start) model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start)
@@ -1668,7 +1662,7 @@ class Decoder(BaseGaussianDiffusion):
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad() @torch.inference_mode()
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1): def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1):
device = self.betas.device device = self.betas.device
@@ -1712,7 +1706,7 @@ class Decoder(BaseGaussianDiffusion):
loss = self.loss_fn(pred, target) loss = self.loss_fn(pred, target)
return loss return loss
@torch.no_grad() @torch.inference_mode()
@eval_decorator @eval_decorator
def sample( def sample(
self, self,
@@ -1845,7 +1839,7 @@ class DALLE2(nn.Module):
self.to_pil = T.ToPILImage() self.to_pil = T.ToPILImage()
@torch.no_grad() @torch.inference_mode()
@eval_decorator @eval_decorator
def forward( def forward(
self, self,

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream' 'dream = dalle2_pytorch.cli:dream'
], ],
}, },
version = '0.0.98', version = '0.0.99',
license='MIT', license='MIT',
description = 'DALL-E 2', description = 'DALL-E 2',
author = 'Phil Wang', author = 'Phil Wang',