mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
fix a potential bug with conditioning with blurred low resolution image, blur should be applied only 50% of the time
This commit is contained in:
@@ -1946,6 +1946,7 @@ class LowresConditioner(nn.Module):
|
|||||||
self,
|
self,
|
||||||
downsample_first = True,
|
downsample_first = True,
|
||||||
downsample_mode_nearest = False,
|
downsample_mode_nearest = False,
|
||||||
|
blur_prob = 0.5,
|
||||||
blur_sigma = 0.6,
|
blur_sigma = 0.6,
|
||||||
blur_kernel_size = 3,
|
blur_kernel_size = 3,
|
||||||
input_image_range = None
|
input_image_range = None
|
||||||
@@ -1956,6 +1957,7 @@ class LowresConditioner(nn.Module):
|
|||||||
|
|
||||||
self.input_image_range = input_image_range
|
self.input_image_range = input_image_range
|
||||||
|
|
||||||
|
self.blur_prob = blur_prob
|
||||||
self.blur_sigma = blur_sigma
|
self.blur_sigma = blur_sigma
|
||||||
self.blur_kernel_size = blur_kernel_size
|
self.blur_kernel_size = blur_kernel_size
|
||||||
|
|
||||||
@@ -1968,20 +1970,27 @@ class LowresConditioner(nn.Module):
|
|||||||
blur_sigma = None,
|
blur_sigma = None,
|
||||||
blur_kernel_size = None
|
blur_kernel_size = None
|
||||||
):
|
):
|
||||||
if self.training and self.downsample_first and exists(downsample_image_size):
|
if self.downsample_first and exists(downsample_image_size):
|
||||||
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range, nearest = self.downsample_mode_nearest)
|
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range, nearest = self.downsample_mode_nearest)
|
||||||
|
|
||||||
if self.training:
|
# blur is only applied 50% of the time
|
||||||
|
# section 3.1 in https://arxiv.org/abs/2106.15282
|
||||||
|
|
||||||
|
if random.random() < self.blur_prob:
|
||||||
|
|
||||||
# when training, blur the low resolution conditional image
|
# when training, blur the low resolution conditional image
|
||||||
|
|
||||||
blur_sigma = default(blur_sigma, self.blur_sigma)
|
blur_sigma = default(blur_sigma, self.blur_sigma)
|
||||||
blur_kernel_size = default(blur_kernel_size, self.blur_kernel_size)
|
blur_kernel_size = default(blur_kernel_size, self.blur_kernel_size)
|
||||||
|
|
||||||
# allow for drawing a random sigma between lo and hi float values
|
# allow for drawing a random sigma between lo and hi float values
|
||||||
|
|
||||||
if isinstance(blur_sigma, tuple):
|
if isinstance(blur_sigma, tuple):
|
||||||
blur_sigma = tuple(map(float, blur_sigma))
|
blur_sigma = tuple(map(float, blur_sigma))
|
||||||
blur_sigma = random.uniform(*blur_sigma)
|
blur_sigma = random.uniform(*blur_sigma)
|
||||||
|
|
||||||
# allow for drawing a random kernel size between lo and hi int values
|
# allow for drawing a random kernel size between lo and hi int values
|
||||||
|
|
||||||
if isinstance(blur_kernel_size, tuple):
|
if isinstance(blur_kernel_size, tuple):
|
||||||
blur_kernel_size = tuple(map(int, blur_kernel_size))
|
blur_kernel_size = tuple(map(int, blur_kernel_size))
|
||||||
kernel_size_lo, kernel_size_hi = blur_kernel_size
|
kernel_size_lo, kernel_size_hi = blur_kernel_size
|
||||||
@@ -1990,7 +1999,6 @@ class LowresConditioner(nn.Module):
|
|||||||
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
|
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
|
||||||
|
|
||||||
cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range)
|
cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range)
|
||||||
|
|
||||||
return cond_fmap
|
return cond_fmap
|
||||||
|
|
||||||
class Decoder(nn.Module):
|
class Decoder(nn.Module):
|
||||||
@@ -2014,6 +2022,7 @@ class Decoder(nn.Module):
|
|||||||
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
|
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
|
||||||
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
|
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
|
||||||
lowres_downsample_mode_nearest = False, # cascading ddpm - whether to use nearest mode downsampling for lower resolution
|
lowres_downsample_mode_nearest = False, # cascading ddpm - whether to use nearest mode downsampling for lower resolution
|
||||||
|
blur_prob = 0.5, # cascading ddpm - when training, the gaussian blur is only applied 50% of the time
|
||||||
blur_sigma = 0.6, # cascading ddpm - blur sigma
|
blur_sigma = 0.6, # cascading ddpm - blur sigma
|
||||||
blur_kernel_size = 3, # cascading ddpm - blur kernel size
|
blur_kernel_size = 3, # cascading ddpm - blur kernel size
|
||||||
clip_denoised = True,
|
clip_denoised = True,
|
||||||
@@ -2162,9 +2171,12 @@ class Decoder(nn.Module):
|
|||||||
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
|
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
|
||||||
assert lowres_conditions == (False, *((True,) * (len(self.unets) - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
|
assert lowres_conditions == (False, *((True,) * (len(self.unets) - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
|
||||||
|
|
||||||
|
self.lowres_downsample_mode_nearest = lowres_downsample_mode_nearest
|
||||||
|
|
||||||
self.to_lowres_cond = LowresConditioner(
|
self.to_lowres_cond = LowresConditioner(
|
||||||
downsample_first = lowres_downsample_first,
|
downsample_first = lowres_downsample_first,
|
||||||
downsample_mode_nearest = lowres_downsample_mode_nearest,
|
downsample_mode_nearest = lowres_downsample_mode_nearest,
|
||||||
|
blur_prob = blur_prob,
|
||||||
blur_sigma = blur_sigma,
|
blur_sigma = blur_sigma,
|
||||||
blur_kernel_size = blur_kernel_size,
|
blur_kernel_size = blur_kernel_size,
|
||||||
input_image_range = self.input_image_range
|
input_image_range = self.input_image_range
|
||||||
@@ -2483,7 +2495,7 @@ class Decoder(nn.Module):
|
|||||||
shape = (batch_size, channel, image_size, image_size)
|
shape = (batch_size, channel, image_size, image_size)
|
||||||
|
|
||||||
if unet.lowres_cond:
|
if unet.lowres_cond:
|
||||||
lowres_cond_img = self.to_lowres_cond(img, target_image_size = image_size)
|
lowres_cond_img = resize_image_to(img, target_image_size = image_size, clamp_range = self.input_image_range, nearest = self.lowres_downsample_mode_nearest)
|
||||||
|
|
||||||
is_latent_diffusion = isinstance(vae, VQGanVAE)
|
is_latent_diffusion = isinstance(vae, VQGanVAE)
|
||||||
image_size = vae.get_encoded_fmap_size(image_size)
|
image_size = vae.get_encoded_fmap_size(image_size)
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '0.23.4'
|
__version__ = '0.23.5'
|
||||||
|
|||||||
Reference in New Issue
Block a user