mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
wrap up cross embed layer feature
This commit is contained in:
@@ -41,9 +41,6 @@ def exists(val):
|
||||
def identity(t, *args, **kwargs):
|
||||
return t
|
||||
|
||||
def is_odd(n):
|
||||
return (n % 2) == 1
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
@@ -1235,12 +1232,13 @@ class CrossEmbedLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim_in,
|
||||
dim_out,
|
||||
kernel_sizes,
|
||||
dim_out = None,
|
||||
stride = 2
|
||||
):
|
||||
super().__init__()
|
||||
assert all([*map(is_odd, kernel_sizes)])
|
||||
assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)])
|
||||
dim_out = default(dim_out, dim_in)
|
||||
|
||||
kernel_sizes = sorted(kernel_sizes)
|
||||
num_scales = len(kernel_sizes)
|
||||
@@ -1282,6 +1280,8 @@ class Unet(nn.Module):
|
||||
init_conv_kernel_size = 7,
|
||||
resnet_groups = 8,
|
||||
init_cross_embed_kernel_sizes = (3, 7, 15),
|
||||
cross_embed_downsample = False,
|
||||
cross_embed_downsample_kernel_sizes = (2, 4),
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -1302,7 +1302,7 @@ class Unet(nn.Module):
|
||||
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
||||
init_dim = default(init_dim, dim // 3 * 2)
|
||||
|
||||
self.init_conv = CrossEmbedLayer(init_channels, init_dim, init_cross_embed_kernel_sizes, stride = 1)
|
||||
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1)
|
||||
|
||||
dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
|
||||
in_out = list(zip(dims[:-1], dims[1:]))
|
||||
@@ -1362,6 +1362,12 @@ class Unet(nn.Module):
|
||||
|
||||
assert len(resnet_groups) == len(in_out)
|
||||
|
||||
# downsample klass
|
||||
|
||||
downsample_klass = Downsample
|
||||
if cross_embed_downsample:
|
||||
downsample_klass = partial(CrossEmbedLayer, kernel_sizes = cross_embed_downsample_kernel_sizes)
|
||||
|
||||
# layers
|
||||
|
||||
self.downs = nn.ModuleList([])
|
||||
@@ -1377,7 +1383,7 @@ class Unet(nn.Module):
|
||||
ResnetBlock(dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
|
||||
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
|
||||
ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
Downsample(dim_out) if not is_last else nn.Identity()
|
||||
downsample_klass(dim_out) if not is_last else nn.Identity()
|
||||
]))
|
||||
|
||||
mid_dim = dims[-1]
|
||||
|
||||
Reference in New Issue
Block a user