mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
allow for control over use of nearest interp method of downsampling low res conditioning, in addition to being able to turn it off
This commit is contained in:
@@ -125,14 +125,23 @@ def log(t, eps = 1e-12):
|
|||||||
def l2norm(t):
|
def l2norm(t):
|
||||||
return F.normalize(t, dim = -1)
|
return F.normalize(t, dim = -1)
|
||||||
|
|
||||||
def resize_image_to(image, target_image_size, clamp_range = None):
|
def resize_image_to(
|
||||||
|
image,
|
||||||
|
target_image_size,
|
||||||
|
clamp_range = None,
|
||||||
|
nearest = False,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
orig_image_size = image.shape[-1]
|
orig_image_size = image.shape[-1]
|
||||||
|
|
||||||
if orig_image_size == target_image_size:
|
if orig_image_size == target_image_size:
|
||||||
return image
|
return image
|
||||||
|
|
||||||
scale_factors = target_image_size / orig_image_size
|
if not nearest:
|
||||||
out = resize(image, scale_factors = scale_factors)
|
scale_factors = target_image_size / orig_image_size
|
||||||
|
out = resize(image, scale_factors = scale_factors, **kwargs)
|
||||||
|
else:
|
||||||
|
out = F.interpolate(image, target_image_size, mode = 'nearest', align_corners = False)
|
||||||
|
|
||||||
if exists(clamp_range):
|
if exists(clamp_range):
|
||||||
out = out.clamp(*clamp_range)
|
out = out.clamp(*clamp_range)
|
||||||
@@ -1781,12 +1790,15 @@ class LowresConditioner(nn.Module):
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
downsample_first = True,
|
downsample_first = True,
|
||||||
|
downsample_mode_nearest = False,
|
||||||
blur_sigma = 0.6,
|
blur_sigma = 0.6,
|
||||||
blur_kernel_size = 3,
|
blur_kernel_size = 3,
|
||||||
input_image_range = None
|
input_image_range = None
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.downsample_first = downsample_first
|
self.downsample_first = downsample_first
|
||||||
|
self.downsample_mode_nearest = downsample_mode_nearest
|
||||||
|
|
||||||
self.input_image_range = input_image_range
|
self.input_image_range = input_image_range
|
||||||
|
|
||||||
self.blur_sigma = blur_sigma
|
self.blur_sigma = blur_sigma
|
||||||
@@ -1802,7 +1814,7 @@ class LowresConditioner(nn.Module):
|
|||||||
blur_kernel_size = None
|
blur_kernel_size = None
|
||||||
):
|
):
|
||||||
if self.training and self.downsample_first and exists(downsample_image_size):
|
if self.training and self.downsample_first and exists(downsample_image_size):
|
||||||
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range)
|
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range, nearest = self.downsample_mode_nearest)
|
||||||
|
|
||||||
if self.training:
|
if self.training:
|
||||||
# when training, blur the low resolution conditional image
|
# when training, blur the low resolution conditional image
|
||||||
@@ -1845,6 +1857,7 @@ class Decoder(nn.Module):
|
|||||||
image_sizes = None, # for cascading ddpm, image size at each stage
|
image_sizes = None, # for cascading ddpm, image size at each stage
|
||||||
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
|
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
|
||||||
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
|
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
|
||||||
|
lowres_downsample_mode_nearest = False, # cascading ddpm - whether to use nearest mode downsampling for lower resolution
|
||||||
blur_sigma = 0.6, # cascading ddpm - blur sigma
|
blur_sigma = 0.6, # cascading ddpm - blur sigma
|
||||||
blur_kernel_size = 3, # cascading ddpm - blur kernel size
|
blur_kernel_size = 3, # cascading ddpm - blur kernel size
|
||||||
clip_denoised = True,
|
clip_denoised = True,
|
||||||
@@ -1987,6 +2000,7 @@ class Decoder(nn.Module):
|
|||||||
|
|
||||||
self.to_lowres_cond = LowresConditioner(
|
self.to_lowres_cond = LowresConditioner(
|
||||||
downsample_first = lowres_downsample_first,
|
downsample_first = lowres_downsample_first,
|
||||||
|
downsample_mode_nearest = lowres_downsample_mode_nearest,
|
||||||
blur_sigma = blur_sigma,
|
blur_sigma = blur_sigma,
|
||||||
blur_kernel_size = blur_kernel_size,
|
blur_kernel_size = blur_kernel_size,
|
||||||
input_image_range = self.input_image_range
|
input_image_range = self.input_image_range
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '0.16.17'
|
__version__ = '0.16.18'
|
||||||
|
|||||||
Reference in New Issue
Block a user