mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
experiment tracker agnostic
This commit is contained in:
@@ -1,24 +1,26 @@
|
||||
import os
|
||||
import math
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from embedding_reader import EmbeddingReader
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
|
||||
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork
|
||||
from dalle2_pytorch.train import load_diffusion_model, save_diffusion_model, print_ribbon
|
||||
from dalle2_pytorch.optimizer import get_optimizer
|
||||
from torch.cuda.amp import autocast,GradScaler
|
||||
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
|
||||
|
||||
from embedding_reader import EmbeddingReader
|
||||
|
||||
import time
|
||||
from tqdm import tqdm
|
||||
|
||||
import wandb
|
||||
os.environ["WANDB_SILENT"] = "true"
|
||||
NUM_TEST_EMBEDDINGS = 100 # for cosine similarity reporting during training
|
||||
REPORT_METRICS_EVERY = 100 # for cosine similarity and other metric reporting during training
|
||||
|
||||
tracker = WandbTracker()
|
||||
|
||||
def eval_model(model,device,image_reader,text_reader,start,end,batch_size,loss_type,phase="Validation"):
|
||||
model.eval()
|
||||
@@ -40,7 +42,7 @@ def eval_model(model,device,image_reader,text_reader,start,end,batch_size,loss_t
|
||||
total_samples += batches
|
||||
|
||||
avg_loss = (total_loss / total_samples)
|
||||
wandb.log({f'{phase} {loss_type}': avg_loss})
|
||||
tracker.log({f'{phase} {loss_type}': avg_loss})
|
||||
|
||||
def report_cosine_sims(diffusion_prior,image_reader,text_reader,train_set_size,NUM_TEST_EMBEDDINGS,device):
|
||||
diffusion_prior.eval()
|
||||
@@ -87,7 +89,7 @@ def report_cosine_sims(diffusion_prior,image_reader,text_reader,train_set_size,N
|
||||
text_embed, predicted_unrelated_embeddings).cpu().numpy()
|
||||
predicted_img_similarity = cos(
|
||||
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
|
||||
wandb.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
|
||||
tracker.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
|
||||
"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity),
|
||||
"CosineSimilarity(orig_image_embed,predicted_image_embed)":np.mean(predicted_img_similarity),
|
||||
"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(unrelated_similarity),
|
||||
@@ -201,7 +203,7 @@ def train(image_embed_dim,
|
||||
image_embed_dim)
|
||||
|
||||
# Log to wandb
|
||||
wandb.log({"Training loss": loss.item(),
|
||||
tracker.log({"Training loss": loss.item(),
|
||||
"Steps": step,
|
||||
"Samples per second": samples_per_sec})
|
||||
# Log cosineSim(text_embed,predicted_image_embed) - cosineSim(text_embed,image_embed)
|
||||
@@ -306,7 +308,7 @@ def main():
|
||||
if(DPRIOR_PATH is not None):
|
||||
RESUME = True
|
||||
else:
|
||||
wandb.init(
|
||||
tracker.init(
|
||||
entity=args.wandb_entity,
|
||||
project=args.wandb_project,
|
||||
config=config)
|
||||
@@ -351,4 +353,4 @@ def main():
|
||||
args.amp)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user