bug fixes for text conditioning update (#175)

This commit is contained in:
zion
2022-06-26 18:12:32 -05:00
committed by GitHub
parent 032e83b0e0
commit 868c001199
3 changed files with 16 additions and 15 deletions

View File

@@ -1781,13 +1781,6 @@ class Decoder(nn.Module):
):
super().__init__()
self.unconditional = unconditional
# text conditioning
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
self.condition_on_text_encodings = condition_on_text_encodings
# clip
self.clip = None
@@ -1819,12 +1812,18 @@ class Decoder(nn.Module):
self.channels = channels
# automatically take care of ensuring that first unet is unconditional
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
# verify conditioning method
unets = cast_tuple(unet)
num_unets = len(unets)
self.unconditional = unconditional
self.condition_on_text_encodings = unets[0].cond_on_text_encodings
assert not (self.condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
# automatically take care of ensuring that first unet is unconditional
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
vaes = pad_tuple_to_length(cast_tuple(vae), len(unets), fillvalue = NullVQGanVAE(channels = self.channels))
# whether to use learned variance, defaults to True for the first unet in the cascade, as in paper

View File

@@ -158,6 +158,8 @@ class UnetConfig(BaseModel):
dim: int
dim_mults: ListOrTuple(int)
image_embed_dim: int = None
text_embed_dim: int = None
cond_on_text_encodings: bool = None
cond_dim: int = None
channels: int = 3
attn_dim_head: int = 32
@@ -170,7 +172,6 @@ class DecoderConfig(BaseModel):
unets: ListOrTuple(UnetConfig)
image_size: int = None
image_sizes: ListOrTuple(int) = None
condition_on_text_encodings: bool = False
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
channels: int = 3
timesteps: int = 1000
@@ -286,16 +287,16 @@ class TrainDecoderConfig(BaseModel):
if data_config is None or decoder_config is None:
# Then something else errored and we should just pass through
return values
using_text_embeddings = decoder_config.condition_on_text_encodings
using_text_encodings = decoder_config.unets[0].cond_on_text_encodings # in dalle2 only the first UNet is text conditioned
using_clip = exists(decoder_config.clip)
img_emb_url = data_config.img_embeddings_url
text_emb_url = data_config.text_embeddings_url
if using_text_embeddings:
# Then we need some way to get the embeddings
assert using_clip or text_emb_url is not None, 'If condition_on_text_encodings is true, either clip or text_embeddings_url must be provided'
assert using_clip or text_emb_url is not None, 'If text conditioning, either clip or text_embeddings_url must be provided'
if using_clip:
if using_text_embeddings:
assert text_emb_url is None or img_emb_url is None, 'Loaded clip, but also provided text_embeddings_url and img_embeddings_url. This is redundant. Remove the clip model or the embeddings'
assert text_emb_url is None or img_emb_url is None, 'Loaded clip, but also provided text_embeddings_url and img_embeddings_url. This is redundant. Remove the clip model or the text embeddings'
else:
assert img_emb_url is None, 'Loaded clip, but also provided img_embeddings_url. This is redundant. Remove the clip model or the embeddings'
if text_emb_url:

View File

@@ -596,9 +596,10 @@ def initialize_training(config, config_path):
has_img_embeddings = config.data.img_embeddings_url is not None
has_text_embeddings = config.data.text_embeddings_url is not None
conditioning_on_text = config.decoder.condition_on_text_encodings
conditioning_on_text = config.decoder.unets[0].cond_on_text_encodings
has_clip_model = config.decoder.clip is not None
data_source_string = ""
if has_img_embeddings:
data_source_string += "precomputed image embeddings"
elif has_clip_model:
@@ -622,7 +623,7 @@ def initialize_training(config, config_path):
inference_device=accelerator.device,
load_config=config.load,
evaluate_config=config.evaluate,
condition_on_text_encodings=config.decoder.condition_on_text_encodings,
condition_on_text_encodings=conditioning_on_text,
**config.train.dict(),
)