mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
bug fixes for text conditioning update (#175)
This commit is contained in:
@@ -1781,13 +1781,6 @@ class Decoder(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.unconditional = unconditional
|
||||
|
||||
# text conditioning
|
||||
|
||||
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
|
||||
self.condition_on_text_encodings = condition_on_text_encodings
|
||||
|
||||
# clip
|
||||
|
||||
self.clip = None
|
||||
@@ -1819,12 +1812,18 @@ class Decoder(nn.Module):
|
||||
|
||||
self.channels = channels
|
||||
|
||||
# automatically take care of ensuring that first unet is unconditional
|
||||
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
|
||||
# verify conditioning method
|
||||
|
||||
unets = cast_tuple(unet)
|
||||
num_unets = len(unets)
|
||||
|
||||
self.unconditional = unconditional
|
||||
self.condition_on_text_encodings = unets[0].cond_on_text_encodings
|
||||
assert not (self.condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
|
||||
|
||||
# automatically take care of ensuring that first unet is unconditional
|
||||
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
|
||||
|
||||
vaes = pad_tuple_to_length(cast_tuple(vae), len(unets), fillvalue = NullVQGanVAE(channels = self.channels))
|
||||
|
||||
# whether to use learned variance, defaults to True for the first unet in the cascade, as in paper
|
||||
|
||||
@@ -158,6 +158,8 @@ class UnetConfig(BaseModel):
|
||||
dim: int
|
||||
dim_mults: ListOrTuple(int)
|
||||
image_embed_dim: int = None
|
||||
text_embed_dim: int = None
|
||||
cond_on_text_encodings: bool = None
|
||||
cond_dim: int = None
|
||||
channels: int = 3
|
||||
attn_dim_head: int = 32
|
||||
@@ -170,7 +172,6 @@ class DecoderConfig(BaseModel):
|
||||
unets: ListOrTuple(UnetConfig)
|
||||
image_size: int = None
|
||||
image_sizes: ListOrTuple(int) = None
|
||||
condition_on_text_encodings: bool = False
|
||||
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
|
||||
channels: int = 3
|
||||
timesteps: int = 1000
|
||||
@@ -286,16 +287,16 @@ class TrainDecoderConfig(BaseModel):
|
||||
if data_config is None or decoder_config is None:
|
||||
# Then something else errored and we should just pass through
|
||||
return values
|
||||
using_text_embeddings = decoder_config.condition_on_text_encodings
|
||||
using_text_encodings = decoder_config.unets[0].cond_on_text_encodings # in dalle2 only the first UNet is text conditioned
|
||||
using_clip = exists(decoder_config.clip)
|
||||
img_emb_url = data_config.img_embeddings_url
|
||||
text_emb_url = data_config.text_embeddings_url
|
||||
if using_text_embeddings:
|
||||
# Then we need some way to get the embeddings
|
||||
assert using_clip or text_emb_url is not None, 'If condition_on_text_encodings is true, either clip or text_embeddings_url must be provided'
|
||||
assert using_clip or text_emb_url is not None, 'If text conditioning, either clip or text_embeddings_url must be provided'
|
||||
if using_clip:
|
||||
if using_text_embeddings:
|
||||
assert text_emb_url is None or img_emb_url is None, 'Loaded clip, but also provided text_embeddings_url and img_embeddings_url. This is redundant. Remove the clip model or the embeddings'
|
||||
assert text_emb_url is None or img_emb_url is None, 'Loaded clip, but also provided text_embeddings_url and img_embeddings_url. This is redundant. Remove the clip model or the text embeddings'
|
||||
else:
|
||||
assert img_emb_url is None, 'Loaded clip, but also provided img_embeddings_url. This is redundant. Remove the clip model or the embeddings'
|
||||
if text_emb_url:
|
||||
|
||||
@@ -596,9 +596,10 @@ def initialize_training(config, config_path):
|
||||
|
||||
has_img_embeddings = config.data.img_embeddings_url is not None
|
||||
has_text_embeddings = config.data.text_embeddings_url is not None
|
||||
conditioning_on_text = config.decoder.condition_on_text_encodings
|
||||
conditioning_on_text = config.decoder.unets[0].cond_on_text_encodings
|
||||
has_clip_model = config.decoder.clip is not None
|
||||
data_source_string = ""
|
||||
|
||||
if has_img_embeddings:
|
||||
data_source_string += "precomputed image embeddings"
|
||||
elif has_clip_model:
|
||||
@@ -622,7 +623,7 @@ def initialize_training(config, config_path):
|
||||
inference_device=accelerator.device,
|
||||
load_config=config.load,
|
||||
evaluate_config=config.evaluate,
|
||||
condition_on_text_encodings=config.decoder.condition_on_text_encodings,
|
||||
condition_on_text_encodings=conditioning_on_text,
|
||||
**config.train.dict(),
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user