Val loss changes, with quite a few other changes. This is in place of the earlier PR(https://github.com/lucidrains/DALLE2-pytorch/pull/67) (#77)

* Val_loss changes - no rebased with lucidrains' master.

* Val Loss changes - now rebased with lucidrains' master

* train_diffusion_prior.py updates

* dalle2_pytorch.py updates

* __init__.py changes

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
This commit is contained in:
Kumar R
2022-05-09 21:23:29 +05:30
committed by GitHub
parent 53c189e46a
commit 8647cb5e76
4 changed files with 179 additions and 86 deletions

View File

@@ -927,7 +927,39 @@ The most significant parameters for the script are as follows:
### Sample wandb run log
Please find a sample wandb run log at : https://wandb.ai/laion/diffusion-prior/runs/aul0rhv5?workspace=
Please find a sample wandb run log at : https://wandb.ai/laion/diffusion-prior/runs/1blxu24j
### Loading and saving the Diffusion Prior model
Two methods are provided, load_diffusion_model and save_diffusion_model, the names being self-explanatory.
## from dalle2_pytorch import load_diffusion_model, save_diffusion_model
load_diffusion_model(dprior_path, device)
dprior_path : path to saved model(.pth)
device : the cuda device you're running on
save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim)
save_path : path to save at
model : object of Diffusion_Prior
optimizer : optimizer object - see train_diffusion_prior.py for how to create one.
e.g: optimizer = get_optimizer(diffusion_prior.net.parameters(), wd=weight_decay, lr=learning_rate)
scaler : a GradScaler object.
e.g: scaler = GradScaler(enabled=amp)
config : config object created in train_diffusion_prior.py - see file for example.
image_embed_dim - the dimension of the image_embedding
e.g: 768
## CLI (wip)

View File

@@ -1,4 +1,4 @@
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder,load_diffusion_model,save_diffusion_model
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
from dalle2_pytorch.train import DecoderTrainer, DiffusionPriorTrainer

View File

@@ -4,6 +4,8 @@ from inspect import isfunction
from functools import partial
from contextlib import contextmanager
from collections import namedtuple
from pathlib import Path
import time
import torch
import torch.nn.functional as F
@@ -32,6 +34,42 @@ from rotary_embedding_torch import RotaryEmbedding
from x_clip import CLIP
from coca_pytorch import CoCa
# Diffusion Prior model loading and saving functions
def load_diffusion_model(dprior_path, device ):
dprior_path = Path(dprior_path)
assert dprior_path.exists(), 'Dprior model file does not exist'
loaded_obj = torch.load(str(dprior_path), map_location='cpu')
# Get hyperparameters of loaded model
dpn_config = loaded_obj['hparams']['diffusion_prior_network']
dp_config = loaded_obj['hparams']['diffusion_prior']
image_embed_dim = loaded_obj['image_embed_dim']['image_embed_dim']
# Create DiffusionPriorNetwork and DiffusionPrior with loaded hyperparameters
# DiffusionPriorNetwork
prior_network = DiffusionPriorNetwork( dim = image_embed_dim, **dpn_config).to(device)
# DiffusionPrior with text embeddings and image embeddings pre-computed
diffusion_prior = DiffusionPrior(net = prior_network, **dp_config, image_embed_dim = image_embed_dim).to(device)
# Load state dict from saved model
diffusion_prior.load_state_dict(loaded_obj['model'])
return diffusion_prior
def save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim):
# Saving State Dict
print("====================================== Saving checkpoint ======================================")
state_dict = dict(model=model.state_dict(),
optimizer=optimizer.state_dict(),
scaler=scaler.state_dict(),
hparams = config,
image_embed_dim = {"image_embed_dim":image_embed_dim})
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
# helper functions
def exists(val):
@@ -1914,3 +1952,4 @@ class DALLE2(nn.Module):
return images[0]
return images

View File

@@ -6,7 +6,7 @@ import numpy as np
import torch
from torch import nn
from embedding_reader import EmbeddingReader
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, load_diffusion_model, save_diffusion_model
from dalle2_pytorch.optimizer import get_optimizer
from torch.cuda.amp import autocast,GradScaler
@@ -41,73 +41,55 @@ def eval_model(model,device,image_reader,text_reader,start,end,batch_size,loss_t
avg_loss = (total_loss / total_samples)
wandb.log({f'{phase} {loss_type}': avg_loss})
def save_model(save_path, state_dict):
# Saving State Dict
print("====================================== Saving checkpoint ======================================")
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
def report_cosine_sims(diffusion_prior,image_reader,text_reader,train_set_size,NUM_TEST_EMBEDDINGS,device):
def report_cosine_sims(diffusion_prior, image_reader, text_reader, train_set_size, val_set_size, NUM_TEST_EMBEDDINGS, device):
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
tstart = train_set_size+val_set_size
tend = train_set_size+val_set_size+NUM_TEST_EMBEDDINGS
for embt, embi in zip(text_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend), image_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend)):
# make a copy of the text embeddings for shuffling
text_embed = torch.tensor(embt[0]).to(device)
text_embed_shuffled = text_embed.clone()
tstart = train_set_size
tend = train_set_size+NUM_TEST_EMBEDDINGS
for embt, embi in zip(text_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend),
image_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend)):
# make a copy of the text embeddings for shuffling
text_embed = torch.tensor(embt[0]).to(device)
text_embed_shuffled = text_embed.clone()
# roll the text embeddings to simulate "unrelated" captions
rolled_idx = torch.roll(torch.arange(NUM_TEST_EMBEDDINGS), 1)
text_embed_shuffled = text_embed_shuffled[rolled_idx]
text_embed_shuffled = text_embed_shuffled / \
text_embed_shuffled.norm(dim=1, keepdim=True)
test_text_shuffled_cond = dict(text_embed=text_embed_shuffled)
rolled_idx = torch.roll(torch.arange(NUM_TEST_EMBEDDINGS), 1)
text_embed_shuffled = text_embed_shuffled[rolled_idx]
text_embed_shuffled = text_embed_shuffled / \
text_embed_shuffled.norm(dim=1, keepdim=True)
test_text_shuffled_cond = dict(text_embed=text_embed_shuffled)
# prepare the text embedding
text_embed = text_embed / text_embed.norm(dim=1, keepdim=True)
test_text_cond = dict(text_embed=text_embed)
text_embed = text_embed / text_embed.norm(dim=1, keepdim=True)
test_text_cond = dict(text_embed=text_embed)
# prepare image embeddings
test_image_embeddings = torch.tensor(embi[0]).to(device)
test_image_embeddings = test_image_embeddings / \
test_image_embeddings.norm(dim=1, keepdim=True)
test_image_embeddings = torch.tensor(embi[0]).to(device)
test_image_embeddings = test_image_embeddings / \
test_image_embeddings.norm(dim=1, keepdim=True)
# predict on the unshuffled text embeddings
predicted_image_embeddings = diffusion_prior.p_sample_loop(
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_cond)
predicted_image_embeddings = predicted_image_embeddings / \
predicted_image_embeddings.norm(dim=1, keepdim=True)
predicted_image_embeddings = diffusion_prior.p_sample_loop(
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_cond)
predicted_image_embeddings = predicted_image_embeddings / \
predicted_image_embeddings.norm(dim=1, keepdim=True)
# predict on the shuffled embeddings
predicted_unrelated_embeddings = diffusion_prior.p_sample_loop(
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_shuffled_cond)
predicted_unrelated_embeddings = predicted_unrelated_embeddings / \
predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
predicted_unrelated_embeddings = diffusion_prior.p_sample_loop(
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_shuffled_cond)
predicted_unrelated_embeddings = predicted_unrelated_embeddings / \
predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
# calculate similarities
original_similarity = cos(
text_embed, test_image_embeddings).cpu().numpy()
predicted_similarity = cos(
text_embed, predicted_image_embeddings).cpu().numpy()
unrelated_similarity = cos(
text_embed, predicted_unrelated_embeddings).cpu().numpy()
predicted_img_similarity = cos(
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
wandb.log(
{"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity)})
wandb.log({"CosineSimilarity(text_embed,predicted_image_embed)": np.mean(
predicted_similarity)})
wandb.log({"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(
unrelated_similarity)})
wandb.log({"CosineSimilarity(image_embed,predicted_image_embed)": np.mean(
predicted_img_similarity)})
return np.mean(predicted_similarity - original_similarity)
original_similarity = cos(
text_embed, test_image_embeddings).cpu().numpy()
predicted_similarity = cos(
text_embed, predicted_image_embeddings).cpu().numpy()
unrelated_similarity = cos(
text_embed, predicted_unrelated_embeddings).cpu().numpy()
predicted_img_similarity = cos(
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
wandb.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity),
"CosineSimilarity(orig_image_embed,predicted_image_embed)":np.mean(predicted_img_similarity),
"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(unrelated_similarity),
"Cosine similarity difference":np.mean(predicted_similarity - original_similarity)})
def train(image_embed_dim,
image_embed_url,
@@ -129,6 +111,11 @@ def train(image_embed_dim,
save_interval,
save_path,
device,
RESUME,
DPRIOR_PATH,
config,
wandb_entity,
wandb_project,
learning_rate=0.001,
max_grad_norm=0.5,
weight_decay=0.01,
@@ -152,16 +139,21 @@ def train(image_embed_dim,
loss_type = dp_loss_type,
condition_on_text_encodings = dp_condition_on_text_encodings).to(device)
# Load pre-trained model from DPRIOR_PATH
if RESUME:
diffusion_prior=load_diffusion_model(DPRIOR_PATH,device)
wandb.init( entity=wandb_entity, project=wandb_project, config=config)
# Create save_path if it doesn't exist
if not os.path.exists(save_path):
os.makedirs(save_path)
# Get image and text embeddings from the servers
print("==============Downloading embeddings - image and text====================")
image_reader = EmbeddingReader(embeddings_folder=image_embed_url, file_format="npy")
text_reader = EmbeddingReader(embeddings_folder=text_embed_url, file_format="npy")
num_data_points = text_reader.count
# Create save_path if it doesn't exist
if not os.path.exists(save_path):
os.makedirs(save_path)
### Training code ###
scaler = GradScaler(enabled=amp)
optimizer = get_optimizer(diffusion_prior.net.parameters(), wd=weight_decay, lr=learning_rate)
@@ -172,6 +164,7 @@ def train(image_embed_dim,
train_set_size = int(train_percent*num_data_points)
val_set_size = int(val_percent*num_data_points)
eval_start = train_set_size
for _ in range(epochs):
diffusion_prior.train()
@@ -192,9 +185,13 @@ def train(image_embed_dim,
if(int(time.time()-t) >= 60*save_interval):
t = time.time()
save_model(
save_diffusion_model(
save_path,
dict(model=diffusion_prior.state_dict(), optimizer=optimizer.state_dict(), scaler=scaler.state_dict()))
diffusion_prior,
optimizer,
scaler,
config,
image_embed_dim)
# Log to wandb
wandb.log({"Training loss": loss.item(),
@@ -204,14 +201,22 @@ def train(image_embed_dim,
# Use NUM_TEST_EMBEDDINGS samples from the test set each time
# Get embeddings from the most recently saved model
if(step % REPORT_METRICS_EVERY) == 0:
diff_cosine_sim = report_cosine_sims(diffusion_prior,
report_cosine_sims(diffusion_prior,
image_reader,
text_reader,
train_set_size,
val_set_size,
NUM_TEST_EMBEDDINGS,
device)
wandb.log({"Cosine similarity difference": diff_cosine_sim})
### Evaluate model(validation run) ###
eval_model(diffusion_prior,
device,
image_reader,
text_reader,
eval_start,
eval_start+NUM_TEST_EMBEDDINGS,
NUM_TEST_EMBEDDINGS,
dp_loss_type,
phase="Validation")
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(diffusion_prior.parameters(), max_grad_norm)
@@ -220,11 +225,6 @@ def train(image_embed_dim,
scaler.update()
optimizer.zero_grad()
### Evaluate model(validation run) ###
start = train_set_size
end=start+val_set_size
eval_model(diffusion_prior,device,image_reader,text_reader,start,end,batch_size,dp_loss_type,phase="Validation")
### Test run ###
test_set_size = int(test_percent*train_set_size)
start=train_set_size+val_set_size
@@ -236,7 +236,6 @@ def main():
# Logging
parser.add_argument("--wandb-entity", type=str, default="laion")
parser.add_argument("--wandb-project", type=str, default="diffusion-prior")
parser.add_argument("--wandb-name", type=str, default="laion-dprior")
parser.add_argument("--wandb-dataset", type=str, default="LAION-5B")
parser.add_argument("--wandb-arch", type=str, default="DiffusionPrior")
# URLs for embeddings
@@ -271,22 +270,40 @@ def main():
# Model checkpointing interval(minutes)
parser.add_argument("--save-interval", type=int, default=30)
parser.add_argument("--save-path", type=str, default="./diffusion_prior_checkpoints")
# Saved model path
parser.add_argument("--pretrained-model-path", type=str, default=None)
args = parser.parse_args()
print("Setting up wandb logging... Please wait...")
config = ({"learning_rate": args.learning_rate,
"architecture": args.wandb_arch,
"dataset": args.wandb_dataset,
"weight_decay":args.weight_decay,
"max_gradient_clipping_norm":args.max_grad_norm,
"batch_size":args.batch_size,
"epochs": args.num_epochs,
"diffusion_prior_network":{"depth":args.dpn_depth,
"dim_head":args.dpn_dim_head,
"heads":args.dpn_heads,
"normformer":args.dp_normformer},
"diffusion_prior":{"condition_on_text_encodings": args.dp_condition_on_text_encodings,
"timesteps": args.dp_timesteps,
"cond_drop_prob":args.dp_cond_drop_prob,
"loss_type":args.dp_loss_type,
"clip":args.clip}
})
wandb.init(
entity=args.wandb_entity,
project=args.wandb_project,
config={
"learning_rate": args.learning_rate,
"architecture": args.wandb_arch,
"dataset": args.wandb_dataset,
"epochs": args.num_epochs,
})
RESUME = False
# Check if DPRIOR_PATH exists(saved model path)
DPRIOR_PATH = args.pretrained_model_path
if(DPRIOR_PATH is not None):
RESUME = True
else:
wandb.init(
entity=args.wandb_entity,
project=args.wandb_project,
config=config)
print("wandb logging setup done!")
# Obtain the utilized device.
has_cuda = torch.cuda.is_available()
@@ -315,6 +332,11 @@ def main():
args.save_interval,
args.save_path,
device,
RESUME,
DPRIOR_PATH,
config,
atgs.wandb_entity,
args.wandb_project,
args.learning_rate,
args.max_grad_norm,
args.weight_decay,