Val loss changes, with quite a few other changes. This is in place of the earlier PR(https://github.com/lucidrains/DALLE2-pytorch/pull/67) (#77)

* Val_loss changes - no rebased with lucidrains' master.

* Val Loss changes - now rebased with lucidrains' master

* train_diffusion_prior.py updates

* dalle2_pytorch.py updates

* __init__.py changes

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
This commit is contained in:
Kumar R
2022-05-09 21:23:29 +05:30
committed by GitHub
parent 53c189e46a
commit 8647cb5e76
4 changed files with 179 additions and 86 deletions

View File

@@ -4,6 +4,8 @@ from inspect import isfunction
from functools import partial
from contextlib import contextmanager
from collections import namedtuple
from pathlib import Path
import time
import torch
import torch.nn.functional as F
@@ -32,6 +34,42 @@ from rotary_embedding_torch import RotaryEmbedding
from x_clip import CLIP
from coca_pytorch import CoCa
# Diffusion Prior model loading and saving functions
def load_diffusion_model(dprior_path, device ):
dprior_path = Path(dprior_path)
assert dprior_path.exists(), 'Dprior model file does not exist'
loaded_obj = torch.load(str(dprior_path), map_location='cpu')
# Get hyperparameters of loaded model
dpn_config = loaded_obj['hparams']['diffusion_prior_network']
dp_config = loaded_obj['hparams']['diffusion_prior']
image_embed_dim = loaded_obj['image_embed_dim']['image_embed_dim']
# Create DiffusionPriorNetwork and DiffusionPrior with loaded hyperparameters
# DiffusionPriorNetwork
prior_network = DiffusionPriorNetwork( dim = image_embed_dim, **dpn_config).to(device)
# DiffusionPrior with text embeddings and image embeddings pre-computed
diffusion_prior = DiffusionPrior(net = prior_network, **dp_config, image_embed_dim = image_embed_dim).to(device)
# Load state dict from saved model
diffusion_prior.load_state_dict(loaded_obj['model'])
return diffusion_prior
def save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim):
# Saving State Dict
print("====================================== Saving checkpoint ======================================")
state_dict = dict(model=model.state_dict(),
optimizer=optimizer.state_dict(),
scaler=scaler.state_dict(),
hparams = config,
image_embed_dim = {"image_embed_dim":image_embed_dim})
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
# helper functions
def exists(val):
@@ -1914,3 +1952,4 @@ class DALLE2(nn.Module):
return images[0]
return images