mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
only use the stable layernorm for final output norm in transformer
This commit is contained in:
@@ -527,25 +527,31 @@ class NoiseScheduler(nn.Module):
|
||||
# diffusion prior
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, dim, eps = 1e-5):
|
||||
def __init__(self, dim, eps = 1e-5, stable = False):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.stable = stable
|
||||
self.g = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
x = x / x.amax(dim = -1, keepdim = True).detach()
|
||||
if self.stable:
|
||||
x = x / x.amax(dim = -1, keepdim = True).detach()
|
||||
|
||||
var = torch.var(x, dim = -1, unbiased = False, keepdim = True)
|
||||
mean = torch.mean(x, dim = -1, keepdim = True)
|
||||
return (x - mean) * (var + self.eps).rsqrt() * self.g
|
||||
|
||||
class ChanLayerNorm(nn.Module):
|
||||
def __init__(self, dim, eps = 1e-5):
|
||||
def __init__(self, dim, eps = 1e-5, stable = False):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.stable = stable
|
||||
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
||||
|
||||
def forward(self, x):
|
||||
x = x / x.amax(dim = 1, keepdim = True).detach()
|
||||
if self.stable:
|
||||
x = x / x.amax(dim = 1, keepdim = True).detach()
|
||||
|
||||
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
||||
mean = torch.mean(x, dim = 1, keepdim = True)
|
||||
return (x - mean) * (var + self.eps).rsqrt() * self.g
|
||||
@@ -669,7 +675,7 @@ class Attention(nn.Module):
|
||||
dropout = 0.,
|
||||
causal = False,
|
||||
rotary_emb = None,
|
||||
pb_relax_alpha = 32 ** 2
|
||||
pb_relax_alpha = 128
|
||||
):
|
||||
super().__init__()
|
||||
self.pb_relax_alpha = pb_relax_alpha
|
||||
@@ -782,7 +788,7 @@ class CausalTransformer(nn.Module):
|
||||
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout, post_activation_norm = normformer)
|
||||
]))
|
||||
|
||||
self.norm = LayerNorm(dim) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options
|
||||
self.norm = LayerNorm(dim, stable = True) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options
|
||||
self.project_out = nn.Linear(dim, dim, bias = False) if final_proj else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.23.2'
|
||||
__version__ = '0.23.3'
|
||||
|
||||
Reference in New Issue
Block a user