allow for cosine sim cross attention, modify linear attention in attempt to resolve issue on fp16

This commit is contained in:
Phil Wang
2022-07-29 11:12:18 -07:00
parent 80046334ad
commit 748c7fe7af
2 changed files with 30 additions and 19 deletions

View File

@@ -1357,7 +1357,8 @@ class ResnetBlock(nn.Module):
*, *,
cond_dim = None, cond_dim = None,
time_cond_dim = None, time_cond_dim = None,
groups = 8 groups = 8,
cosine_sim_cross_attn = False
): ):
super().__init__() super().__init__()
@@ -1377,7 +1378,8 @@ class ResnetBlock(nn.Module):
'b (h w) c', 'b (h w) c',
CrossAttention( CrossAttention(
dim = dim_out, dim = dim_out,
context_dim = cond_dim context_dim = cond_dim,
cosine_sim = cosine_sim_cross_attn
) )
) )
@@ -1412,11 +1414,12 @@ class CrossAttention(nn.Module):
heads = 8, heads = 8,
dropout = 0., dropout = 0.,
norm_context = False, norm_context = False,
pb_relax_alpha = 32 ** 2 cosine_sim = False,
cosine_sim_scale = 16
): ):
super().__init__() super().__init__()
self.pb_relax_alpha = pb_relax_alpha self.cosine_sim = cosine_sim
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1) self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
self.heads = heads self.heads = heads
inner_dim = dim_head * heads inner_dim = dim_head * heads
@@ -1452,7 +1455,10 @@ class CrossAttention(nn.Module):
k = torch.cat((nk, k), dim = -2) k = torch.cat((nk, k), dim = -2)
v = torch.cat((nv, v), dim = -2) v = torch.cat((nv, v), dim = -2)
q = q * self.scale if self.cosine_sim:
q, k = map(l2norm, (q, k))
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
sim = einsum('b h i d, b h j d -> b h i j', q, k) sim = einsum('b h i d, b h j d -> b h i j', q, k)
max_neg_value = -torch.finfo(sim.dtype).max max_neg_value = -torch.finfo(sim.dtype).max
@@ -1462,9 +1468,6 @@ class CrossAttention(nn.Module):
mask = rearrange(mask, 'b j -> b 1 1 j') mask = rearrange(mask, 'b j -> b 1 1 j')
sim = sim.masked_fill(~mask, max_neg_value) sim = sim.masked_fill(~mask, max_neg_value)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
sim = sim * self.pb_relax_alpha
attn = sim.softmax(dim = -1) attn = sim.softmax(dim = -1)
out = einsum('b h i j, b h j d -> b h i d', attn, v) out = einsum('b h i j, b h j d -> b h i d', attn, v)
@@ -1494,6 +1497,7 @@ class LinearAttention(nn.Module):
def forward(self, fmap): def forward(self, fmap):
h, x, y = self.heads, *fmap.shape[-2:] h, x, y = self.heads, *fmap.shape[-2:]
seq_len = x * y
fmap = self.norm(fmap) fmap = self.norm(fmap)
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1) q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
@@ -1503,7 +1507,9 @@ class LinearAttention(nn.Module):
k = k.softmax(dim = -2) k = k.softmax(dim = -2)
q = q * self.scale q = q * self.scale
v = v / (x * y) v = l2norm(v)
k, v = map(lambda t: t / math.sqrt(seq_len), (k, v))
context = einsum('b n d, b n e -> b d e', k, v) context = einsum('b n d, b n e -> b d e', k, v)
out = einsum('b n d, b d e -> b n e', q, context) out = einsum('b n d, b d e -> b n e', q, context)
@@ -1591,6 +1597,7 @@ class Unet(nn.Module):
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/ lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
sparse_attn = False, sparse_attn = False,
cosine_sim_cross_attn = False,
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention) attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
cond_on_text_encodings = False, cond_on_text_encodings = False,
max_text_len = 256, max_text_len = 256,
@@ -1734,9 +1741,13 @@ class Unet(nn.Module):
upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
# prepare resnet klass
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn)
# give memory efficient unet an initial resnet block # give memory efficient unet an initial resnet block
self.init_resnet_block = ResnetBlock(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None self.init_resnet_block = resnet_block(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
# layers # layers
@@ -1763,17 +1774,17 @@ class Unet(nn.Module):
self.downs.append(nn.ModuleList([ self.downs.append(nn.ModuleList([
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None, downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
ResnetBlock(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups), resnet_block(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
nn.ModuleList([ResnetBlock(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]), nn.ModuleList([resnet_block(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
attention, attention,
downsample_klass(dim_layer, dim_out = dim_out) if not is_last and not memory_efficient else nn.Conv2d(dim_layer, dim_out, 1) downsample_klass(dim_layer, dim_out = dim_out) if not is_last and not memory_efficient else nn.Conv2d(dim_layer, dim_out, 1)
])) ]))
mid_dim = dims[-1] mid_dim = dims[-1]
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1]) self.mid_block1 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
self.mid_attn = create_self_attn(mid_dim) self.mid_attn = create_self_attn(mid_dim)
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1]) self.mid_block2 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks), reversed(self_attn))): for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks), reversed(self_attn))):
is_last = ind >= (len(in_out) - 1) is_last = ind >= (len(in_out) - 1)
@@ -1790,8 +1801,8 @@ class Unet(nn.Module):
upsample_combiner_dims.append(dim_out) upsample_combiner_dims.append(dim_out)
self.ups.append(nn.ModuleList([ self.ups.append(nn.ModuleList([
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups), resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]), nn.ModuleList([resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
attention, attention,
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity() upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
])) ]))
@@ -1807,7 +1818,7 @@ class Unet(nn.Module):
# a final resnet block # a final resnet block
self.final_resnet_block = ResnetBlock(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) self.final_resnet_block = resnet_block(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
out_dim_in = dim + (channels if lowres_cond else 0) out_dim_in = dim + (channels if lowres_cond else 0)

View File

@@ -1 +1 @@
__version__ = '1.2.2' __version__ = '1.4.0'