mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
allow for cosine sim cross attention, modify linear attention in attempt to resolve issue on fp16
This commit is contained in:
@@ -1357,7 +1357,8 @@ class ResnetBlock(nn.Module):
|
||||
*,
|
||||
cond_dim = None,
|
||||
time_cond_dim = None,
|
||||
groups = 8
|
||||
groups = 8,
|
||||
cosine_sim_cross_attn = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -1377,7 +1378,8 @@ class ResnetBlock(nn.Module):
|
||||
'b (h w) c',
|
||||
CrossAttention(
|
||||
dim = dim_out,
|
||||
context_dim = cond_dim
|
||||
context_dim = cond_dim,
|
||||
cosine_sim = cosine_sim_cross_attn
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1412,11 +1414,12 @@ class CrossAttention(nn.Module):
|
||||
heads = 8,
|
||||
dropout = 0.,
|
||||
norm_context = False,
|
||||
pb_relax_alpha = 32 ** 2
|
||||
cosine_sim = False,
|
||||
cosine_sim_scale = 16
|
||||
):
|
||||
super().__init__()
|
||||
self.pb_relax_alpha = pb_relax_alpha
|
||||
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
|
||||
self.cosine_sim = cosine_sim
|
||||
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
|
||||
self.heads = heads
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
@@ -1452,7 +1455,10 @@ class CrossAttention(nn.Module):
|
||||
k = torch.cat((nk, k), dim = -2)
|
||||
v = torch.cat((nv, v), dim = -2)
|
||||
|
||||
q = q * self.scale
|
||||
if self.cosine_sim:
|
||||
q, k = map(l2norm, (q, k))
|
||||
|
||||
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
|
||||
|
||||
sim = einsum('b h i d, b h j d -> b h i j', q, k)
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
@@ -1462,9 +1468,6 @@ class CrossAttention(nn.Module):
|
||||
mask = rearrange(mask, 'b j -> b 1 1 j')
|
||||
sim = sim.masked_fill(~mask, max_neg_value)
|
||||
|
||||
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
||||
sim = sim * self.pb_relax_alpha
|
||||
|
||||
attn = sim.softmax(dim = -1)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
@@ -1494,6 +1497,7 @@ class LinearAttention(nn.Module):
|
||||
|
||||
def forward(self, fmap):
|
||||
h, x, y = self.heads, *fmap.shape[-2:]
|
||||
seq_len = x * y
|
||||
|
||||
fmap = self.norm(fmap)
|
||||
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
|
||||
@@ -1503,7 +1507,9 @@ class LinearAttention(nn.Module):
|
||||
k = k.softmax(dim = -2)
|
||||
|
||||
q = q * self.scale
|
||||
v = v / (x * y)
|
||||
v = l2norm(v)
|
||||
|
||||
k, v = map(lambda t: t / math.sqrt(seq_len), (k, v))
|
||||
|
||||
context = einsum('b n d, b n e -> b d e', k, v)
|
||||
out = einsum('b n d, b d e -> b n e', q, context)
|
||||
@@ -1591,6 +1597,7 @@ class Unet(nn.Module):
|
||||
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
||||
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
|
||||
sparse_attn = False,
|
||||
cosine_sim_cross_attn = False,
|
||||
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
||||
cond_on_text_encodings = False,
|
||||
max_text_len = 256,
|
||||
@@ -1734,9 +1741,13 @@ class Unet(nn.Module):
|
||||
|
||||
upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
|
||||
|
||||
# prepare resnet klass
|
||||
|
||||
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn)
|
||||
|
||||
# give memory efficient unet an initial resnet block
|
||||
|
||||
self.init_resnet_block = ResnetBlock(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
|
||||
self.init_resnet_block = resnet_block(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
|
||||
|
||||
# layers
|
||||
|
||||
@@ -1763,17 +1774,17 @@ class Unet(nn.Module):
|
||||
|
||||
self.downs.append(nn.ModuleList([
|
||||
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
|
||||
ResnetBlock(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([ResnetBlock(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
resnet_block(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([resnet_block(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
attention,
|
||||
downsample_klass(dim_layer, dim_out = dim_out) if not is_last and not memory_efficient else nn.Conv2d(dim_layer, dim_out, 1)
|
||||
]))
|
||||
|
||||
mid_dim = dims[-1]
|
||||
|
||||
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
self.mid_block1 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
self.mid_attn = create_self_attn(mid_dim)
|
||||
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
self.mid_block2 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
|
||||
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks), reversed(self_attn))):
|
||||
is_last = ind >= (len(in_out) - 1)
|
||||
@@ -1790,8 +1801,8 @@ class Unet(nn.Module):
|
||||
upsample_combiner_dims.append(dim_out)
|
||||
|
||||
self.ups.append(nn.ModuleList([
|
||||
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
attention,
|
||||
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
|
||||
]))
|
||||
@@ -1807,7 +1818,7 @@ class Unet(nn.Module):
|
||||
|
||||
# a final resnet block
|
||||
|
||||
self.final_resnet_block = ResnetBlock(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
self.final_resnet_block = resnet_block(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
|
||||
out_dim_in = dim + (channels if lowres_cond else 0)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user