mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-24 03:54:19 +01:00
use cross attention for conditioning unet based on image embedding tokens (which opens up the door on conditioning on text encodings as well
This commit is contained in:
@@ -101,7 +101,7 @@ clip = CLIP(
|
||||
unet = Unet(
|
||||
dim = 128,
|
||||
image_embed_dim = 512,
|
||||
time_dim = 128,
|
||||
cond_dim = 128,
|
||||
channels = 3,
|
||||
dim_mults=(1, 2, 4, 8)
|
||||
).cuda()
|
||||
@@ -264,7 +264,7 @@ loss.backward()
|
||||
unet = Unet(
|
||||
dim = 128,
|
||||
image_embed_dim = 512,
|
||||
time_dim = 128,
|
||||
cond_dim = 128,
|
||||
channels = 3,
|
||||
dim_mults=(1, 2, 4, 8)
|
||||
).cuda()
|
||||
|
||||
Reference in New Issue
Block a user