default to l2 loss

This commit is contained in:
Phil Wang
2022-05-11 19:24:41 -07:00
parent 6f76652d11
commit 6021945fc8
2 changed files with 3 additions and 3 deletions

View File

@@ -831,7 +831,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
image_channels = 3,
timesteps = 1000,
cond_drop_prob = 0.,
loss_type = "l1",
loss_type = "l2",
predict_x_start = True,
beta_schedule = "cosine",
condition_on_text_encodings = True, # the paper suggests this is needed, but you can turn it off for your CLIP preprocessed text embed -> image embed training
@@ -1614,7 +1614,7 @@ class Decoder(BaseGaussianDiffusion):
timesteps = 1000,
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
loss_type = 'l1',
loss_type = 'l2',
beta_schedule = 'cosine',
predict_x_start = False,
predict_x_start_for_latent_diffusion = False,

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.2.10',
version = '0.2.11',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',