From 5a731cc936a3ff5e5189cb5b9ba0ce9c2f150f3b Mon Sep 17 00:00:00 2001 From: Phil Wang Date: Mon, 18 Apr 2022 12:00:47 -0700 Subject: [PATCH] make kernel size and sigma for gaussian blur for cascading DDPM overridable at forward. also make sure unets are wrapped in a modulelist so that at sample time, blurring does not happen --- dalle2_pytorch/dalle2_pytorch.py | 16 ++++++++++++---- setup.py | 2 +- 2 files changed, 13 insertions(+), 5 deletions(-) diff --git a/dalle2_pytorch/dalle2_pytorch.py b/dalle2_pytorch/dalle2_pytorch.py index ea69b5b..3364f75 100644 --- a/dalle2_pytorch/dalle2_pytorch.py +++ b/dalle2_pytorch/dalle2_pytorch.py @@ -1,6 +1,7 @@ import math from tqdm import tqdm from inspect import isfunction +from functools import partial import torch import torch.nn.functional as F @@ -12,6 +13,7 @@ from einops_exts import rearrange_many, repeat_many, check_shape from einops_exts.torch import EinopsToAndFrom from kornia.filters.gaussian import GaussianBlur2d +from kornia.filters import gaussian_blur2d from dalle2_pytorch.tokenizer import tokenizer @@ -811,6 +813,7 @@ class Unet(nn.Module): lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/ lowres_cond_upsample_mode = 'bilinear', blur_sigma = 0.1, + blur_kernel_size = 3, attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention) ): super().__init__() @@ -819,7 +822,8 @@ class Unet(nn.Module): self.lowres_cond = lowres_cond self.lowres_cond_upsample_mode = lowres_cond_upsample_mode - self.lowres_cond_blur = GaussianBlur2d((3, 3), (blur_sigma, blur_sigma)) + self.lowres_blur_kernel_size = blur_kernel_size + self.lowres_blur_sigma = blur_sigma # determine dimensions @@ -915,7 +919,9 @@ class Unet(nn.Module): image_embed, lowres_cond_img = None, text_encodings = None, - cond_drop_prob = 0. + cond_drop_prob = 0., + blur_sigma = None, + blur_kernel_size = None ): batch_size, device = x.shape[0], x.device @@ -926,7 +932,9 @@ class Unet(nn.Module): if exists(lowres_cond_img): if self.training: # when training, blur the low resolution conditional image - lowres_cond_img = self.lowres_cond_blur(lowres_cond_img) + blur_sigma = default(blur_sigma, self.lowres_blur_sigma) + blur_kernel_size = default(blur_kernel_size, self.lowres_blur_kernel_size) + lowres_cond_img = gaussian_blur2d(lowres_cond_img, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2)) lowres_cond_img = resize_image_to(lowres_cond_img, x.shape[-2:], mode = self.lowres_cond_upsample_mode) x = torch.cat((x, lowres_cond_img), dim = 1) @@ -1014,7 +1022,7 @@ class Decoder(nn.Module): self.clip_image_size = clip.image_size self.channels = clip.image_channels - self.unets = cast_tuple(unet) + self.unets = nn.ModuleList(unet) image_sizes = default(image_sizes, (clip.image_size,)) image_sizes = tuple(sorted(set(image_sizes))) diff --git a/setup.py b/setup.py index fcf89e3..8e44f4d 100644 --- a/setup.py +++ b/setup.py @@ -10,7 +10,7 @@ setup( 'dream = dalle2_pytorch.cli:dream' ], }, - version = '0.0.20', + version = '0.0.21', license='MIT', description = 'DALL-E 2', author = 'Phil Wang',