use .to(device) to avoid copy, within one_unet_in_gpu context

This commit is contained in:
Phil Wang
2023-03-07 12:41:55 -08:00
parent 848e8a480a
commit 580274be79
2 changed files with 12 additions and 5 deletions

View File

@@ -2727,11 +2727,16 @@ class Decoder(nn.Module):
if exists(unet_number):
unet = self.get_unet(unet_number)
# devices
cuda, cpu = torch.device('cuda'), torch.device('cpu')
self.cuda()
devices = [module_device(unet) for unet in self.unets]
self.unets.cpu()
unet.cuda()
self.unets.to(cpu)
unet.to(cuda)
yield
@@ -3114,7 +3119,8 @@ class Decoder(nn.Module):
distributed = False,
inpaint_image = None,
inpaint_mask = None,
inpaint_resample_times = 5
inpaint_resample_times = 5,
one_unet_in_gpu_at_time = True
):
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
@@ -3137,6 +3143,7 @@ class Decoder(nn.Module):
assert image.shape[0] == batch_size, 'image must have batch size of {} if starting at unet number > 1'.format(batch_size)
prev_unet_output_size = self.image_sizes[start_at_unet_number - 2]
img = resize_image_to(image, prev_unet_output_size, nearest = True)
is_cuda = next(self.parameters()).is_cuda
num_unets = self.num_unets
@@ -3146,7 +3153,7 @@ class Decoder(nn.Module):
if unet_number < start_at_unet_number:
continue # It's the easiest way to do it
context = self.one_unet_in_gpu(unet = unet) if is_cuda else null_context()
context = self.one_unet_in_gpu(unet = unet) if is_cuda and one_unet_in_gpu_at_time else null_context()
with context:
# prepare low resolution conditioning for upsamplers

View File

@@ -1 +1 @@
__version__ = '1.12.3'
__version__ = '1.12.4'