mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 01:34:19 +01:00
project management
This commit is contained in:
@@ -1078,6 +1078,7 @@ This library would not have gotten to this working state without the help of
|
||||
- [x] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
|
||||
- [x] use pydantic for config drive training
|
||||
- [x] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
|
||||
- [x] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
|
||||
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
|
||||
- [ ] train on a toy task, offer in colab
|
||||
@@ -1087,11 +1088,9 @@ This library would not have gotten to this working state without the help of
|
||||
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
|
||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
|
||||
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
||||
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
||||
- [ ] decoder needs one day worth of refactor for tech debt
|
||||
- [ ] allow for unet to be able to condition non-cross attention style as well
|
||||
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
|
||||
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
|
||||
|
||||
## Citations
|
||||
|
||||
Reference in New Issue
Block a user