fix a potential issue in the low resolution conditioner, when downsampling and then upsampling using resize right, thanks to @marunine

This commit is contained in:
Phil Wang
2022-07-07 09:41:49 -07:00
parent 900f086a6d
commit 46be8c32d3
3 changed files with 19 additions and 5 deletions

View File

@@ -125,14 +125,19 @@ def log(t, eps = 1e-12):
def l2norm(t):
return F.normalize(t, dim = -1)
def resize_image_to(image, target_image_size):
def resize_image_to(image, target_image_size, clamp_range = None):
orig_image_size = image.shape[-1]
if orig_image_size == target_image_size:
return image
scale_factors = target_image_size / orig_image_size
return resize(image, scale_factors = scale_factors)
out = resize(image, scale_factors = scale_factors)
if exists(clamp_range):
out = out.clamp(*clamp_range)
return out
# image normalization functions
# ddpms expect images to be in the range of -1 to 1
@@ -1778,9 +1783,12 @@ class LowresConditioner(nn.Module):
downsample_first = True,
blur_sigma = 0.6,
blur_kernel_size = 3,
input_image_range = None
):
super().__init__()
self.downsample_first = downsample_first
self.input_image_range = input_image_range
self.blur_sigma = blur_sigma
self.blur_kernel_size = blur_kernel_size
@@ -1794,7 +1802,7 @@ class LowresConditioner(nn.Module):
blur_kernel_size = None
):
if self.training and self.downsample_first and exists(downsample_image_size):
cond_fmap = resize_image_to(cond_fmap, downsample_image_size)
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range)
if self.training:
# when training, blur the low resolution conditional image
@@ -1814,7 +1822,7 @@ class LowresConditioner(nn.Module):
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
cond_fmap = resize_image_to(cond_fmap, target_image_size)
cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range)
return cond_fmap
@@ -1968,6 +1976,10 @@ class Decoder(nn.Module):
self.predict_x_start = cast_tuple(predict_x_start, len(unets)) if not predict_x_start_for_latent_diffusion else tuple(map(lambda t: isinstance(t, VQGanVAE), self.vaes))
# input image range
self.input_image_range = (-1. if not auto_normalize_img else 0., 1.)
# cascading ddpm related stuff
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
@@ -1977,6 +1989,7 @@ class Decoder(nn.Module):
downsample_first = lowres_downsample_first,
blur_sigma = blur_sigma,
blur_kernel_size = blur_kernel_size,
input_image_range = self.input_image_range
)
# classifier free guidance