mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
bring in attention-based upsampling to strengthen vqgan-vae, seems to work as advertised in initial experiments in GAN
This commit is contained in:
10
README.md
10
README.md
@@ -577,4 +577,14 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@article{Arar2021LearnedQF,
|
||||||
|
title = {Learned Queries for Efficient Local Attention},
|
||||||
|
author = {Moab Arar and Ariel Shamir and Amit H. Bermano},
|
||||||
|
journal = {ArXiv},
|
||||||
|
year = {2021},
|
||||||
|
volume = {abs/2112.11435}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - Yang Song's <a href="https://arxiv.org/abs/2011.13456">paper</a>
|
*Creating noise from data is easy; creating data from noise is generative modeling.* - Yang Song's <a href="https://arxiv.org/abs/2011.13456">paper</a>
|
||||||
|
|||||||
@@ -243,6 +243,112 @@ class ResBlock(nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.net(x) + x
|
return self.net(x) + x
|
||||||
|
|
||||||
|
# attention-based upsampling
|
||||||
|
# from https://arxiv.org/abs/2112.11435
|
||||||
|
|
||||||
|
class QueryAndAttend(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
dim,
|
||||||
|
num_queries = 1,
|
||||||
|
dim_head = 32,
|
||||||
|
heads = 8,
|
||||||
|
window_size = 3
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.scale = dim_head ** -0.5
|
||||||
|
inner_dim = dim_head * heads
|
||||||
|
self.heads = heads
|
||||||
|
self.dim_head = dim_head
|
||||||
|
self.window_size = window_size
|
||||||
|
self.num_queries = num_queries
|
||||||
|
|
||||||
|
self.rel_pos_bias = nn.Parameter(torch.randn(heads, num_queries, window_size * window_size, 1, 1))
|
||||||
|
|
||||||
|
self.queries = nn.Parameter(torch.randn(heads, num_queries, dim_head))
|
||||||
|
self.to_kv = nn.Conv2d(dim, dim_head * 2, 1, bias = False)
|
||||||
|
self.to_out = nn.Conv2d(inner_dim, dim, 1, bias = False)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""
|
||||||
|
einstein notation
|
||||||
|
b - batch
|
||||||
|
h - heads
|
||||||
|
l - num queries
|
||||||
|
d - head dimension
|
||||||
|
x - height
|
||||||
|
y - width
|
||||||
|
j - source sequence for attending to (kernel size squared in this case)
|
||||||
|
"""
|
||||||
|
|
||||||
|
wsz, heads, dim_head, num_queries = self.window_size, self.heads, self.dim_head, self.num_queries
|
||||||
|
batch, _, height, width = x.shape
|
||||||
|
|
||||||
|
is_one_query = self.num_queries == 1
|
||||||
|
|
||||||
|
# queries, keys, values
|
||||||
|
|
||||||
|
q = self.queries * self.scale
|
||||||
|
k, v = self.to_kv(x).chunk(2, dim = 1)
|
||||||
|
|
||||||
|
# similarities
|
||||||
|
|
||||||
|
sim = einsum('h l d, b d x y -> b h l x y', q, k)
|
||||||
|
sim = rearrange(sim, 'b ... x y -> b (...) x y')
|
||||||
|
|
||||||
|
# unfold the similarity scores, with float(-inf) as padding value
|
||||||
|
|
||||||
|
mask_value = -torch.finfo(sim.dtype).max
|
||||||
|
sim = F.pad(sim, ((wsz // 2,) * 4), value = mask_value)
|
||||||
|
sim = F.unfold(sim, kernel_size = wsz)
|
||||||
|
sim = rearrange(sim, 'b (h l j) (x y) -> b h l j x y', h = heads, l = num_queries, x = height, y = width)
|
||||||
|
|
||||||
|
# rel pos bias
|
||||||
|
|
||||||
|
sim = sim + self.rel_pos_bias
|
||||||
|
|
||||||
|
# numerically stable attention
|
||||||
|
|
||||||
|
sim = sim - sim.amax(dim = -3, keepdim = True).detach()
|
||||||
|
attn = sim.softmax(dim = -3)
|
||||||
|
|
||||||
|
# unfold values
|
||||||
|
|
||||||
|
v = F.pad(v, ((wsz // 2,) * 4), value = 0.)
|
||||||
|
v = F.unfold(v, kernel_size = wsz)
|
||||||
|
v = rearrange(v, 'b (d j) (x y) -> b d j x y', d = dim_head, x = height, y = width)
|
||||||
|
|
||||||
|
# aggregate values
|
||||||
|
|
||||||
|
out = einsum('b h l j x y, b d j x y -> b l h d x y', attn, v)
|
||||||
|
|
||||||
|
# combine heads
|
||||||
|
|
||||||
|
out = rearrange(out, 'b l h d x y -> (b l) (h d) x y')
|
||||||
|
out = self.to_out(out)
|
||||||
|
out = rearrange(out, '(b l) d x y -> b l d x y', b = batch)
|
||||||
|
|
||||||
|
# return original input if one query
|
||||||
|
|
||||||
|
if is_one_query:
|
||||||
|
out = rearrange(out, 'b 1 ... -> b ...')
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
class QueryAttnUpsample(nn.Module):
|
||||||
|
def __init__(self, dim, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.norm = LayerNormChan(dim)
|
||||||
|
self.qna = QueryAndAttend(dim = dim, num_queries = 4, **kwargs)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.norm(x)
|
||||||
|
out = self.qna(x)
|
||||||
|
out = rearrange(out, 'b (w1 w2) c h w -> b c (h w1) (w w2)', w1 = 2, w2 = 2)
|
||||||
|
return out
|
||||||
|
|
||||||
|
# vqgan attention layer
|
||||||
class VQGanAttention(nn.Module):
|
class VQGanAttention(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@@ -375,7 +481,7 @@ class VQGanVAE(nn.Module):
|
|||||||
|
|
||||||
for layer_index, (dim_in, dim_out), layer_num_resnet_blocks, layer_use_attn in zip(range(layers), dim_pairs, num_resnet_blocks, use_attn):
|
for layer_index, (dim_in, dim_out), layer_num_resnet_blocks, layer_use_attn in zip(range(layers), dim_pairs, num_resnet_blocks, use_attn):
|
||||||
append(self.encoders, nn.Sequential(nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), leaky_relu()))
|
append(self.encoders, nn.Sequential(nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), leaky_relu()))
|
||||||
prepend(self.decoders, nn.Sequential(nn.Upsample(scale_factor = 2, mode = 'bilinear', align_corners = False), nn.Conv2d(dim_out, dim_in, 3, padding = 1), leaky_relu()))
|
prepend(self.decoders, nn.Sequential(QueryAttnUpsample(dim_out), nn.Conv2d(dim_out, dim_in, 3, padding = 1), leaky_relu()))
|
||||||
|
|
||||||
if layer_use_attn:
|
if layer_use_attn:
|
||||||
prepend(self.decoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
|
prepend(self.decoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
|
||||||
|
|||||||
Reference in New Issue
Block a user