Overhauled the tracker system (#172)

* Overhauled the tracker system
Separated the logging and saving capabilities
Changed creation to be consistent and initializing behavior to be defined by a class initializer instead of in the training script
Added class separation between different types of loaders and savers to make the system more verbose

* Changed the saver system to only save the checkpoint once

* Added better error handling for saving checkpoints

* Fixed an error where wandb would error when passed arbitrary kwargs

* Fixed variable naming issues for improved saver
Added more logging during long pauses

* Fixed which methods need to be dummy to immediatly return
Added the ability to set whether you find unused parameters

* Added more logging for when a wandb loader fails
This commit is contained in:
Aidan Dempster
2022-07-01 12:39:40 -04:00
committed by GitHub
parent 7b0edf9e42
commit 27b0f7ca0d
7 changed files with 662 additions and 212 deletions

View File

@@ -1,12 +1,15 @@
import urllib.request
import os
from pathlib import Path
import importlib
import shutil
from itertools import zip_longest
from typing import Optional, List, Union
from pydantic import BaseModel
import torch
from torch import nn
from dalle2_pytorch.utils import import_or_print_error
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
# constants
@@ -27,126 +30,484 @@ def load_wandb_file(run_path, file_path, **kwargs):
def load_local_file(file_path, **kwargs):
return file_path
# base class
class BaseTracker(nn.Module):
def __init__(self, data_path = DEFAULT_DATA_PATH):
super().__init__()
class BaseLogger:
"""
An abstract class representing an object that can log data.
Parameters:
data_path (str): A file path for storing temporary data.
verbose (bool): Whether of not to always print logs to the console.
"""
def __init__(self, data_path: str, verbose: bool = False, **kwargs):
self.data_path = Path(data_path)
self.data_path.mkdir(parents = True, exist_ok = True)
self.verbose = verbose
def init(self, config, **kwargs):
raise NotImplementedError
def log(self, log, **kwargs):
raise NotImplementedError
def log_images(self, images, **kwargs):
raise NotImplementedError
def save_state_dict(self, state_dict, relative_path, **kwargs):
raise NotImplementedError
def recall_state_dict(self, recall_source, *args, **kwargs):
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
"""
Loads a state dict from any source.
Since a user may wish to load a model from a different source than their own tracker (i.e. tracking using wandb but recalling from disk),
this should not be linked to any individual tracker.
Initializes the logger.
Errors if the logger is invalid.
"""
# TODO: Pull this into a dict or something similar so that we can add more sources without having a massive switch statement
if recall_source == 'wandb':
return torch.load(load_wandb_file(*args, **kwargs))
elif recall_source == 'local':
return torch.load(load_local_file(*args, **kwargs))
else:
raise ValueError('`recall_source` must be one of `wandb` or `local`')
def save_file(self, file_path, **kwargs):
raise NotImplementedError
def recall_file(self, recall_source, *args, **kwargs):
if recall_source == 'wandb':
return load_wandb_file(*args, **kwargs)
elif recall_source == 'local':
return load_local_file(*args, **kwargs)
else:
raise ValueError('`recall_source` must be one of `wandb` or `local`')
def log(self, log, **kwargs) -> None:
raise NotImplementedError
# Tracker that no-ops all calls except for recall
def log_images(self, images, captions=[], image_section="images", **kwargs) -> None:
raise NotImplementedError
class DummyTracker(BaseTracker):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def log_file(self, file_path, **kwargs) -> None:
raise NotImplementedError
def init(self, config, **kwargs):
pass
def log_error(self, error_string, **kwargs) -> None:
raise NotImplementedError
def log(self, log, **kwargs):
pass
class ConsoleLogger(BaseLogger):
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
print("Logging to console")
def log_images(self, images, **kwargs):
pass
def save_state_dict(self, state_dict, relative_path, **kwargs):
pass
def save_file(self, file_path, **kwargs):
pass
# basic stdout class
class ConsoleTracker(BaseTracker):
def init(self, **config):
print(config)
def log(self, log, **kwargs):
def log(self, log, **kwargs) -> None:
print(log)
def log_images(self, images, **kwargs): # noop for logging images
pass
def save_state_dict(self, state_dict, relative_path, **kwargs):
torch.save(state_dict, str(self.data_path / relative_path))
def save_file(self, file_path, **kwargs):
# This is a no-op for local file systems since it is already saved locally
def log_images(self, images, captions=[], image_section="images", **kwargs) -> None:
pass
# basic wandb class
def log_file(self, file_path, **kwargs) -> None:
pass
class WandbTracker(BaseTracker):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb experiment tracker')
def log_error(self, error_string, **kwargs) -> None:
print(error_string)
class WandbLogger(BaseLogger):
"""
Logs to a wandb run.
Parameters:
data_path (str): A file path for storing temporary data.
wandb_entity (str): The wandb entity to log to.
wandb_project (str): The wandb project to log to.
wandb_run_id (str): The wandb run id to resume.
wandb_run_name (str): The wandb run name to use.
wandb_resume (bool): Whether to resume a wandb run.
"""
def __init__(self,
data_path: str,
wandb_entity: str,
wandb_project: str,
wandb_run_id: Optional[str] = None,
wandb_run_name: Optional[str] = None,
wandb_resume: bool = False,
**kwargs
):
super().__init__(data_path, **kwargs)
self.entity = wandb_entity
self.project = wandb_project
self.run_id = wandb_run_id
self.run_name = wandb_run_name
self.resume = wandb_resume
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
assert self.entity is not None, "wandb_entity must be specified for wandb logger"
assert self.project is not None, "wandb_project must be specified for wandb logger"
self.wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb logger')
os.environ["WANDB_SILENT"] = "true"
# Initializes the wandb run
init_object = {
"entity": self.entity,
"project": self.project,
"config": {**full_config.dict(), **extra_config}
}
if self.run_name is not None:
init_object['name'] = self.run_name
if self.resume:
assert self.run_id is not None, '`wandb_run_id` must be provided if `wandb_resume` is True'
if self.run_name is not None:
print("You are renaming a run. I hope that is what you intended.")
init_object['resume'] = 'must'
init_object['id'] = self.run_id
def init(self, **config):
self.wandb.init(**config)
self.wandb.init(**init_object)
print(f"Logging to wandb run {self.wandb.run.path}-{self.wandb.run.name}")
def log(self, log, verbose=False, **kwargs):
if verbose:
def log(self, log, **kwargs) -> None:
if self.verbose:
print(log)
self.wandb.log(log, **kwargs)
def log_images(self, images, captions=[], image_section="images", **kwargs):
def log_images(self, images, captions=[], image_section="images", **kwargs) -> None:
"""
Takes a tensor of images and a list of captions and logs them to wandb.
"""
wandb_images = [self.wandb.Image(image, caption=caption) for image, caption in zip_longest(images, captions)]
self.log({ image_section: wandb_images }, **kwargs)
def save_state_dict(self, state_dict, relative_path, **kwargs):
"""
Saves a state_dict to disk and uploads it
"""
full_path = str(self.data_path / relative_path)
torch.save(state_dict, full_path)
self.wandb.save(full_path, base_path = str(self.data_path)) # Upload and keep relative to data_path
self.wandb.log({ image_section: wandb_images }, **kwargs)
def save_file(self, file_path, base_path=None, **kwargs):
"""
Uploads a file from disk to wandb
"""
def log_file(self, file_path, base_path: Optional[str] = None, **kwargs) -> None:
if base_path is None:
base_path = self.data_path
# Then we take the basepath as the parent of the file_path
base_path = Path(file_path).parent
self.wandb.save(str(file_path), base_path = str(base_path))
def log_error(self, error_string, step=None, **kwargs) -> None:
if self.verbose:
print(error_string)
self.wandb.log({"error": error_string, **kwargs}, step=step)
logger_type_map = {
'console': ConsoleLogger,
'wandb': WandbLogger,
}
def create_logger(logger_type: str, data_path: str, **kwargs) -> BaseLogger:
if logger_type == 'custom':
raise NotImplementedError('Custom loggers are not supported yet. Please use a different logger type.')
try:
logger_class = logger_type_map[logger_type]
except KeyError:
raise ValueError(f'Unknown logger type: {logger_type}. Must be one of {list(logger_type_map.keys())}')
return logger_class(data_path, **kwargs)
class BaseLoader:
"""
An abstract class representing an object that can load a model checkpoint.
Parameters:
data_path (str): A file path for storing temporary data.
"""
def __init__(self, data_path: str, **kwargs):
self.data_path = Path(data_path)
def init(self, logger: BaseLogger, **kwargs) -> None:
raise NotImplementedError
def recall() -> dict:
raise NotImplementedError
class UrlLoader(BaseLoader):
"""
A loader that downloads the file from a url and loads it
Parameters:
data_path (str): A file path for storing temporary data.
url (str): The url to download the file from.
"""
def __init__(self, data_path: str, url: str, **kwargs):
super().__init__(data_path, **kwargs)
self.url = url
def init(self, logger: BaseLogger, **kwargs) -> None:
# Makes sure the file exists to be downloaded
pass # TODO: Actually implement that
def recall(self) -> dict:
# Download the file
save_path = self.data_path / 'loaded_checkpoint.pth'
urllib.request.urlretrieve(self.url, str(save_path))
# Load the file
return torch.load(str(save_path), map_location='cpu')
class LocalLoader(BaseLoader):
"""
A loader that loads a file from a local path
Parameters:
data_path (str): A file path for storing temporary data.
file_path (str): The path to the file to load.
"""
def __init__(self, data_path: str, file_path: str, **kwargs):
super().__init__(data_path, **kwargs)
self.file_path = Path(file_path)
def init(self, logger: BaseLogger, **kwargs) -> None:
# Makes sure the file exists to be loaded
if not self.file_path.exists():
raise FileNotFoundError(f'Model not found at {self.file_path}')
def recall(self) -> dict:
# Load the file
return torch.load(str(self.file_path), map_location='cpu')
class WandbLoader(BaseLoader):
"""
A loader that loads a model from an existing wandb run
"""
def __init__(self, data_path: str, wandb_file_path: str, wandb_run_path: Optional[str] = None, **kwargs):
super().__init__(data_path, **kwargs)
self.run_path = wandb_run_path
self.file_path = wandb_file_path
def init(self, logger: BaseLogger, **kwargs) -> None:
self.wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
# Make sure the file can be downloaded
if self.wandb.run is not None and self.run_path is None:
self.run_path = self.wandb.run.path
assert self.run_path is not None, 'wandb run was not found to load from. If not using the wandb logger must specify the `wandb_run_path`.'
assert self.run_path is not None, '`wandb_run_path` must be provided for the wandb loader'
assert self.file_path is not None, '`wandb_file_path` must be provided for the wandb loader'
os.environ["WANDB_SILENT"] = "true"
pass # TODO: Actually implement that
def recall(self) -> dict:
file_reference = self.wandb.restore(self.file_path, run_path=self.run_path)
return torch.load(file_reference.name, map_location='cpu')
loader_type_map = {
'url': UrlLoader,
'local': LocalLoader,
'wandb': WandbLoader,
}
def create_loader(loader_type: str, data_path: str, **kwargs) -> BaseLoader:
if loader_type == 'custom':
raise NotImplementedError('Custom loaders are not supported yet. Please use a different loader type.')
try:
loader_class = loader_type_map[loader_type]
except KeyError:
raise ValueError(f'Unknown loader type: {loader_type}. Must be one of {list(loader_type_map.keys())}')
return loader_class(data_path, **kwargs)
class BaseSaver:
def __init__(self,
data_path: str,
save_latest_to: Optional[Union[str, bool]] = 'latest.pth',
save_best_to: Optional[Union[str, bool]] = 'best.pth',
save_meta_to: str = './',
save_type: str = 'checkpoint',
**kwargs
):
self.data_path = Path(data_path)
self.save_latest_to = save_latest_to
self.saving_latest = save_latest_to is not None and save_latest_to is not False
self.save_best_to = save_best_to
self.saving_best = save_best_to is not None and save_best_to is not False
self.save_meta_to = save_meta_to
self.save_type = save_type
assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`'
assert self.save_meta_to is not None, '`save_meta_to` must be provided'
assert self.saving_latest or self.saving_best, '`save_latest_to` or `save_best_to` must be provided'
def init(self, logger: BaseLogger, **kwargs) -> None:
raise NotImplementedError
def save_file(self, local_path: Path, save_path: str, is_best=False, is_latest=False, **kwargs) -> None:
"""
Save a general file under save_meta_to
"""
raise NotImplementedError
class LocalSaver(BaseSaver):
def __init__(self,
data_path: str,
**kwargs
):
super().__init__(data_path, **kwargs)
def init(self, logger: BaseLogger, **kwargs) -> None:
# Makes sure the directory exists to be saved to
print(f"Saving {self.save_type} locally")
if not self.data_path.exists():
self.data_path.mkdir(parents=True)
def save_file(self, local_path: str, save_path: str, **kwargs) -> None:
# Copy the file to save_path
save_path_file_name = Path(save_path).name
print(f"Saving {save_path_file_name} {self.save_type} to local path {save_path}")
shutil.copy(local_path, save_path)
class WandbSaver(BaseSaver):
def __init__(self, data_path: str, wandb_run_path: Optional[str] = None, **kwargs):
super().__init__(data_path, **kwargs)
self.run_path = wandb_run_path
def init(self, logger: BaseLogger, **kwargs) -> None:
self.wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb logger')
os.environ["WANDB_SILENT"] = "true"
# Makes sure that the user can upload tot his run
if self.run_path is not None:
entity, project, run_id = self.run_path.split("/")
self.run = self.wandb.init(entity=entity, project=project, id=run_id)
else:
assert self.wandb.run is not None, 'You must be using the wandb logger if you are saving to wandb and have not set `wandb_run_path`'
self.run = self.wandb.run
# TODO: Now actually check if upload is possible
print(f"Saving to wandb run {self.run.path}-{self.run.name}")
def save_file(self, local_path: Path, save_path: str, **kwargs) -> None:
# In order to log something in the correct place in wandb, we need to have the same file structure here
save_path_file_name = Path(save_path).name
print(f"Saving {save_path_file_name} {self.save_type} to wandb run {self.run.path}-{self.run.name}")
save_path = Path(self.data_path) / save_path
save_path.parent.mkdir(parents=True, exist_ok=True)
shutil.copy(local_path, save_path)
self.run.save(str(save_path), base_path = str(self.data_path), policy='now')
class HuggingfaceSaver(BaseSaver):
def __init__(self, data_path: str, huggingface_repo: str, token_path: Optional[str] = None, **kwargs):
super().__init__(data_path, **kwargs)
self.huggingface_repo = huggingface_repo
self.token_path = token_path
def init(self, logger: BaseLogger, **kwargs):
# Makes sure this user can upload to the repo
self.hub = import_or_print_error('huggingface_hub', '`pip install huggingface_hub` to use the huggingface saver')
try:
identity = self.hub.whoami() # Errors if not logged in
# Then we are logged in
except:
# We are not logged in. Use the token_path to set the token.
if not os.path.exists(self.token_path):
raise Exception("Not logged in to huggingface and no token_path specified. Please login with `huggingface-cli login` or if that does not work set the token_path.")
with open(self.token_path, "r") as f:
token = f.read().strip()
self.hub.HfApi.set_access_token(token)
identity = self.hub.whoami()
print(f"Saving to huggingface repo {self.huggingface_repo}")
def save_file(self, local_path: Path, save_path: str, **kwargs) -> None:
# Saving to huggingface is easy, we just need to upload the file with the correct name
save_path_file_name = Path(save_path).name
print(f"Saving {save_path_file_name} {self.save_type} to huggingface repo {self.huggingface_repo}")
self.hub.upload_file(
path_or_fileobj=str(local_path),
path_in_repo=str(save_path),
repo_id=self.huggingface_repo
)
saver_type_map = {
'local': LocalSaver,
'wandb': WandbSaver,
'huggingface': HuggingfaceSaver
}
def create_saver(saver_type: str, data_path: str, **kwargs) -> BaseSaver:
if saver_type == 'custom':
raise NotImplementedError('Custom savers are not supported yet. Please use a different saver type.')
try:
saver_class = saver_type_map[saver_type]
except KeyError:
raise ValueError(f'Unknown saver type: {saver_type}. Must be one of {list(saver_type_map.keys())}')
return saver_class(data_path, **kwargs)
class Tracker:
def __init__(self, data_path: Optional[str] = DEFAULT_DATA_PATH, overwrite_data_path: bool = False, dummy_mode: bool = False):
self.data_path = Path(data_path)
if not dummy_mode:
if overwrite_data_path:
if self.data_path.exists():
shutil.rmtree(self.data_path)
self.data_path.mkdir(parents=True)
else:
assert not self.data_path.exists(), f'Data path {self.data_path} already exists. Set overwrite_data_path to True to overwrite.'
if not self.data_path.exists():
self.data_path.mkdir(parents=True)
self.logger: BaseLogger = None
self.loader: Optional[BaseLoader] = None
self.savers: List[BaseSaver]= []
self.dummy_mode = dummy_mode
def init(self, full_config: BaseModel, extra_config: dict):
assert self.logger is not None, '`logger` must be set before `init` is called'
if self.dummy_mode:
# The only thing we need is a loader
if self.loader is not None:
self.loader.init(self.logger)
return
assert len(self.savers) > 0, '`savers` must be set before `init` is called'
self.logger.init(full_config, extra_config)
if self.loader is not None:
self.loader.init(self.logger)
for saver in self.savers:
saver.init(self.logger)
def add_logger(self, logger: BaseLogger):
self.logger = logger
def add_loader(self, loader: BaseLoader):
self.loader = loader
def add_saver(self, saver: BaseSaver):
self.savers.append(saver)
def log(self, *args, **kwargs):
if self.dummy_mode:
return
self.logger.log(*args, **kwargs)
def log_images(self, *args, **kwargs):
if self.dummy_mode:
return
self.logger.log_images(*args, **kwargs)
def log_file(self, *args, **kwargs):
if self.dummy_mode:
return
self.logger.log_file(*args, **kwargs)
def save_config(self, current_config_path: str, config_name = 'config.json'):
if self.dummy_mode:
return
# Save the config under config_name in the root folder of data_path
shutil.copy(current_config_path, self.data_path / config_name)
for saver in self.savers:
remote_path = Path(saver.save_meta_to) / config_name
saver.save_file(current_config_path, str(remote_path))
def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path:
"""
Gets the state dict to be saved and writes it to file_path.
If save_type is 'checkpoint', we save the entire trainer state dict.
If save_type is 'model', we save only the model state dict.
"""
assert save_type in ['checkpoint', 'model']
if save_type == 'checkpoint':
trainer.save(file_path, overwrite=True, **kwargs)
elif save_type == 'model':
if isinstance(trainer, DiffusionPriorTrainer):
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
state_dict = trainer.unwrap_model(prior).state_dict()
torch.save(state_dict, file_path)
elif isinstance(trainer, DecoderTrainer):
decoder = trainer.accelerator.unwrap_model(trainer.decoder)
if trainer.use_ema:
trainable_unets = decoder.unets
decoder.unets = trainer.unets # Swap EMA unets in
state_dict = decoder.state_dict()
decoder.unets = trainable_unets # Swap back
else:
state_dict = decoder.state_dict()
torch.save(state_dict, file_path)
else:
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
return Path(file_path)
def save(self, trainer, is_best: bool, is_latest: bool, **kwargs):
if self.dummy_mode:
return
if not is_best and not is_latest:
# Nothing to do
return
# Save the checkpoint and model to data_path
checkpoint_path = self.data_path / 'checkpoint.pth'
self._save_state_dict(trainer, 'checkpoint', checkpoint_path, **kwargs)
model_path = self.data_path / 'model.pth'
self._save_state_dict(trainer, 'model', model_path, **kwargs)
print("Saved cached models")
# Call the save methods on the savers
for saver in self.savers:
local_path = checkpoint_path if saver.save_type == 'checkpoint' else model_path
if saver.saving_latest and is_latest:
latest_checkpoint_path = saver.save_latest_to.format(**kwargs)
try:
saver.save_file(local_path, latest_checkpoint_path, is_latest=True, **kwargs)
except Exception as e:
self.logger.log_error(f'Error saving checkpoint: {e}', **kwargs)
print(f'Error saving checkpoint: {e}')
if saver.saving_best and is_best:
best_checkpoint_path = saver.save_best_to.format(**kwargs)
try:
saver.save_file(local_path, best_checkpoint_path, is_best=True, **kwargs)
except Exception as e:
self.logger.log_error(f'Error saving checkpoint: {e}', **kwargs)
print(f'Error saving checkpoint: {e}')
def recall(self):
if self.loader is not None:
return self.loader.recall()
else:
raise ValueError('No loader specified')