mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
complete naive conditioning of unet with image embedding, with ability to dropout for classifier free guidance
This commit is contained in:
@@ -231,7 +231,7 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
|
||||
# classifier free guidance
|
||||
|
||||
cond_prob_mask = prob_mask_like(batch_size, cond_prob_drop, device = device)
|
||||
cond_prob_mask = prob_mask_like((batch_size,), cond_prob_drop, device = device)
|
||||
mask &= rearrange(cond_prob_mask, 'b -> b 1')
|
||||
|
||||
# attend
|
||||
@@ -290,7 +290,7 @@ class ConvNextBlock(nn.Module):
|
||||
dim,
|
||||
dim_out,
|
||||
*,
|
||||
time_emb_dim = None,
|
||||
cond_dim = None,
|
||||
mult = 2,
|
||||
norm = True
|
||||
):
|
||||
@@ -299,8 +299,8 @@ class ConvNextBlock(nn.Module):
|
||||
|
||||
self.mlp = nn.Sequential(
|
||||
nn.GELU(),
|
||||
nn.Linear(time_emb_dim, dim)
|
||||
) if exists(time_emb_dim) else None
|
||||
nn.Linear(cond_dim, dim)
|
||||
) if exists(cond_dim) else None
|
||||
|
||||
self.ds_conv = nn.Conv2d(dim, dim, 7, padding = 3, groups = dim)
|
||||
|
||||
@@ -314,12 +314,12 @@ class ConvNextBlock(nn.Module):
|
||||
|
||||
self.res_conv = nn.Conv2d(dim, dim_out, 1) if need_projection else nn.Identity()
|
||||
|
||||
def forward(self, x, time_emb = None):
|
||||
def forward(self, x, cond = None):
|
||||
h = self.ds_conv(x)
|
||||
|
||||
if exists(self.mlp):
|
||||
assert exists(time_emb)
|
||||
condition = self.mlp(time_emb)
|
||||
assert exists(cond)
|
||||
condition = self.mlp(cond)
|
||||
h = h + rearrange(condition, 'b c -> b c 1 1')
|
||||
|
||||
h = self.net(h)
|
||||
@@ -331,10 +331,10 @@ class Unet(nn.Module):
|
||||
dim,
|
||||
*,
|
||||
image_embed_dim,
|
||||
time_dim = None,
|
||||
out_dim = None,
|
||||
dim_mults=(1, 2, 4, 8),
|
||||
channels = 3,
|
||||
with_time_emb = True
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
@@ -342,17 +342,18 @@ class Unet(nn.Module):
|
||||
dims = [channels, *map(lambda m: dim * m, dim_mults)]
|
||||
in_out = list(zip(dims[:-1], dims[1:]))
|
||||
|
||||
if with_time_emb:
|
||||
time_dim = dim
|
||||
self.time_mlp = nn.Sequential(
|
||||
SinusoidalPosEmb(dim),
|
||||
nn.Linear(dim, dim * 4),
|
||||
nn.GELU(),
|
||||
nn.Linear(dim * 4, dim)
|
||||
)
|
||||
else:
|
||||
time_dim = None
|
||||
self.time_mlp = None
|
||||
time_dim = default(time_dim, dim)
|
||||
|
||||
self.time_mlp = nn.Sequential(
|
||||
SinusoidalPosEmb(dim),
|
||||
nn.Linear(dim, dim * 4),
|
||||
nn.GELU(),
|
||||
nn.Linear(dim * 4, dim)
|
||||
)
|
||||
|
||||
self.null_image_embed = nn.Parameter(torch.randn(image_embed_dim))
|
||||
|
||||
cond_dim = time_dim + image_embed_dim
|
||||
|
||||
self.downs = nn.ModuleList([])
|
||||
self.ups = nn.ModuleList([])
|
||||
@@ -362,20 +363,20 @@ class Unet(nn.Module):
|
||||
is_last = ind >= (num_resolutions - 1)
|
||||
|
||||
self.downs.append(nn.ModuleList([
|
||||
ConvNextBlock(dim_in, dim_out, time_emb_dim = time_dim, norm = ind != 0),
|
||||
ConvNextBlock(dim_out, dim_out, time_emb_dim = time_dim),
|
||||
ConvNextBlock(dim_in, dim_out, cond_dim = cond_dim, norm = ind != 0),
|
||||
ConvNextBlock(dim_out, dim_out, cond_dim = cond_dim),
|
||||
Downsample(dim_out) if not is_last else nn.Identity()
|
||||
]))
|
||||
|
||||
mid_dim = dims[-1]
|
||||
self.mid_block = ConvNextBlock(mid_dim, mid_dim, time_emb_dim = time_dim)
|
||||
self.mid_block = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
|
||||
|
||||
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
|
||||
is_last = ind >= (num_resolutions - 1)
|
||||
|
||||
self.ups.append(nn.ModuleList([
|
||||
ConvNextBlock(dim_out * 2, dim_in, time_emb_dim = time_dim),
|
||||
ConvNextBlock(dim_in, dim_in, time_emb_dim = time_dim),
|
||||
ConvNextBlock(dim_out * 2, dim_in, cond_dim = cond_dim),
|
||||
ConvNextBlock(dim_in, dim_in, cond_dim = cond_dim),
|
||||
Upsample(dim_in) if not is_last else nn.Identity()
|
||||
]))
|
||||
|
||||
@@ -408,10 +409,20 @@ class Unet(nn.Module):
|
||||
text_encodings = None,
|
||||
cond_prob_drop = 0.
|
||||
):
|
||||
batch_size, device = image_embed.shape[0], image_embed.device
|
||||
t = self.time_mlp(time) if exists(self.time_mlp) else None
|
||||
t = self.time_mlp(time)
|
||||
|
||||
cond_prob_mask = prob_mask_like(batch_size, cond_prob_drop, device = device)
|
||||
cond_prob_mask = prob_mask_like((batch_size,), cond_prob_drop, device = device)
|
||||
|
||||
# mask out image embedding depending on condition dropout
|
||||
# for classifier free guidance
|
||||
|
||||
image_embed = torch.where(
|
||||
rearrange(cond_prob_mask, 'b -> b 1'),
|
||||
image_embed,
|
||||
rearrange(self.null_image_embed, 'd -> 1 d')
|
||||
)
|
||||
|
||||
cond = torch.cat((t, image_embed), dim = -1)
|
||||
|
||||
hiddens = []
|
||||
|
||||
|
||||
Reference in New Issue
Block a user