Add linear decay function to dynamic challenges (#2347)

* Add linear decay funciton to dynamic value challenges
* Add the ability to choose between decay functions for dynamic value challenges
* Closes #2224 
* Closes #865
This commit is contained in:
Kevin Chung
2023-06-29 03:44:33 -04:00
committed by GitHub
parent 79ae94285c
commit 70999b4fa0
6 changed files with 205 additions and 46 deletions

View File

@@ -1,14 +1,10 @@
from __future__ import division # Use floating point for math calculations
import math
from flask import Blueprint
from CTFd.models import Challenges, Solves, db
from CTFd.models import Challenges, db
from CTFd.plugins import register_plugin_assets_directory
from CTFd.plugins.challenges import CHALLENGE_CLASSES, BaseChallenge
from CTFd.plugins.dynamic_challenges.decay import DECAY_FUNCTIONS, logarithmic
from CTFd.plugins.migrations import upgrade
from CTFd.utils.modes import get_model
class DynamicChallenge(Challenges):
@@ -19,6 +15,7 @@ class DynamicChallenge(Challenges):
initial = db.Column(db.Integer, default=0)
minimum = db.Column(db.Integer, default=0)
decay = db.Column(db.Integer, default=0)
function = db.Column(db.String(32), default="logarithmic")
def __init__(self, *args, **kwargs):
super(DynamicChallenge, self).__init__(**kwargs)
@@ -51,40 +48,8 @@ class DynamicValueChallenge(BaseChallenge):
@classmethod
def calculate_value(cls, challenge):
Model = get_model()
solve_count = (
Solves.query.join(Model, Solves.account_id == Model.id)
.filter(
Solves.challenge_id == challenge.id,
Model.hidden == False,
Model.banned == False,
)
.count()
)
# If the solve count is 0 we shouldn't manipulate the solve count to
# let the math update back to normal
if solve_count != 0:
# We subtract -1 to allow the first solver to get max point value
solve_count -= 1
# Handle situations where admins have entered a 0 decay
# This is invalid as it can cause a division by zero
if challenge.decay == 0:
challenge.decay = 1
# It is important that this calculation takes into account floats.
# Hence this file uses from __future__ import division
value = (
((challenge.minimum - challenge.initial) / (challenge.decay ** 2))
* (solve_count ** 2)
) + challenge.initial
value = math.ceil(value)
if value < challenge.minimum:
value = challenge.minimum
f = DECAY_FUNCTIONS.get(challenge.function, logarithmic)
value = f(challenge)
challenge.value = value
db.session.commit()

View File

@@ -16,16 +16,36 @@
</small>
</label>
<input type="number" class="form-control" name="initial" placeholder="Enter value" required>
</div>
<div class="form-group">
<label for="value">Decay Limit<br>
<label for="value">Decay Function<br>
<small class="form-text text-muted">
The amount of solves before the challenge reaches its minimum value
<span>How the dynamic value will be calculated based on the Decay value</span>
<ul>
<li>Linear: Calculated as <code>Initial - (Decay * SolveCount)</code></li>
<li>Logarithmic: Calculated as <code>(((Minimum - Initial) / (Decay^2)) * (SolveCount^2)) + Initial</code></li>
</ul>
</small>
</label>
<input type="number" class="form-control" name="decay" min="1" placeholder="Enter decay limit" required>
<select name="function" class="custom-select">
<option value="linear">Linear</option>
<option value="logarithmic">Logarithmic</option>
</select>
</div>
<div class="form-group">
<label for="value">Decay<br>
<small class="form-text text-muted">
<span>The decay value is used differently depending on the above Decay Function</span>
<ul>
<li>Linear: The amount of points deducted per solve. Equal deduction per solve.</li>
<li>Logarithmic: The amount of solves before the challenge reaches its minimum value. Earlier solves will lose less
points. Later solves will lose more points</li>
</ul>
</small>
</label>
<input type="number" class="form-control" name="decay" min="1" placeholder="Enter Decay value" required>
</div>
<div class="form-group">

View File

@@ -20,9 +20,29 @@
</div>
<div class="form-group">
<label for="value">Decay Limit<br>
<label for="value">Decay Function<br>
<small class="form-text text-muted">
The amount of solves before the challenge reaches its minimum value
<span>How the dynamic value will be calculated based on the Decay value</span>
<ul>
<li>Linear: Calculated as <code>Initial - (Decay * SolveCount)</code></li>
<li>Logarithmic: Calculated as <code>(((Minimum - Initial) / (Decay^2)) * (SolveCount^2)) + Initial</code></li>
</ul>
</small>
</label>
<select name="function" class="custom-select">
<option value="linear" {% if challenge.function == "linear" %}selected{% endif %}>Linear</option>
<option value="logarithmic" {% if challenge.function == "logarithmic" %}selected{% endif %}>Logarithmic</option>
</select>
</div>
<div class="form-group">
<label for="value">Decay<br>
<small class="form-text text-muted">
<span>The decay value is used differently depending on the above Decay Function</span>
<ul>
<li>Linear: The amount of points deducted per solve. Equal deduction per solve.</li>
<li>Logarithmic: The amount of solves before the challenge reaches its minimum value. Earlier solves will lose less points. Later solves will lose more points</li>
</ul>
</small>
</label>
<input type="number" class="form-control chal-decay" min="1" name="decay" value="{{ challenge.decay }}" required>

View File

@@ -0,0 +1,75 @@
from __future__ import division # Use floating point for math calculations
import math
from CTFd.models import Solves
from CTFd.utils.modes import get_model
def get_solve_count(challenge):
Model = get_model()
solve_count = (
Solves.query.join(Model, Solves.account_id == Model.id)
.filter(
Solves.challenge_id == challenge.id,
Model.hidden == False,
Model.banned == False,
)
.count()
)
return solve_count
def linear(challenge):
solve_count = get_solve_count(challenge)
# If the solve count is 0 we shouldn't manipulate the solve count to
# let the math update back to normal
if solve_count != 0:
# We subtract -1 to allow the first solver to get max point value
solve_count -= 1
value = challenge.initial - (challenge.decay * solve_count)
value = math.ceil(value)
if value < challenge.minimum:
value = challenge.minimum
return value
def logarithmic(challenge):
solve_count = get_solve_count(challenge)
# If the solve count is 0 we shouldn't manipulate the solve count to
# let the math update back to normal
if solve_count != 0:
# We subtract -1 to allow the first solver to get max point value
solve_count -= 1
# Handle situations where admins have entered a 0 decay
# This is invalid as it can cause a division by zero
if challenge.decay == 0:
challenge.decay = 1
# It is important that this calculation takes into account floats.
# Hence this file uses from __future__ import division
value = (
((challenge.minimum - challenge.initial) / (challenge.decay ** 2))
* (solve_count ** 2)
) + challenge.initial
value = math.ceil(value)
if value < challenge.minimum:
value = challenge.minimum
return value
DECAY_FUNCTIONS = {
"linear": linear,
"logarithmic": logarithmic,
}

View File

@@ -0,0 +1,28 @@
"""Add func column to dynamic_challenges
Revision ID: eb68f277ab61
Revises: 9e6f6578ca84
Create Date: 2023-06-28 17:37:48.244827
"""
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "eb68f277ab61"
down_revision = "b37fb68807ea"
branch_labels = None
depends_on = None
def upgrade(op=None):
op.add_column(
"dynamic_challenge", sa.Column("function", sa.String(length=32), nullable=True)
)
conn = op.get_bind()
conn.execute(
"UPDATE dynamic_challenge SET function = 'logarithmic' WHERE function IS NULL"
)
def downgrade(op=None):
op.drop_column("dynamic_challenge", "function")

View File

@@ -349,3 +349,54 @@ def test_dynamic_challenges_reset():
assert DynamicChallenge.query.count() == 0
destroy_ctfd(app)
def test_dynamic_challenge_linear_loses_value_properly():
app = create_ctfd(enable_plugins=True)
with app.app_context():
register_user(app)
client = login_as_user(app, name="admin", password="password")
challenge_data = {
"name": "name",
"category": "category",
"description": "description",
"function": "linear",
"initial": 100,
"decay": 5,
"minimum": 1,
"state": "visible",
"type": "dynamic",
}
r = client.post("/api/v1/challenges", json=challenge_data)
assert r.get_json().get("data")["id"] == 1
gen_flag(app.db, challenge_id=1, content="flag")
for i, team_id in enumerate(range(2, 26)):
name = "user{}".format(team_id)
email = "user{}@examplectf.com".format(team_id)
# We need to bypass rate-limiting so gen_user instead of register_user
user = gen_user(app.db, name=name, email=email)
user_id = user.id
with app.test_client() as client:
# We need to bypass rate-limiting so creating a fake user instead of logging in
with client.session_transaction() as sess:
sess["id"] = user_id
sess["nonce"] = "fake-nonce"
sess["hash"] = hmac(user.password)
data = {"submission": "flag", "challenge_id": 1}
r = client.post("/api/v1/challenges/attempt", json=data)
resp = r.get_json()["data"]
assert resp["status"] == "correct"
chal = DynamicChallenge.query.filter_by(id=1).first()
if i >= 20:
assert chal.value == chal.minimum
else:
assert chal.value == (chal.initial - (i * 5))
destroy_ctfd(app)