Files
Auto-GPT/benchmark/agbenchmark/challenges/base.py
Reinier van der Leer a0cae78ba3 feat(benchmark): Add -N, --attempts option for multiple attempts per challenge
LLMs are probabilistic systems. Reproducibility of completions is not guaranteed. It only makes sense to account for this, by running challenges multiple times to obtain a success ratio rather than a boolean success/failure result.

Changes:
- Add `-N`, `--attempts` option to CLI and `attempts_per_challenge` parameter to `main.py:run_benchmark`.
- Add dynamic `i_attempt` fixture through `pytest_generate_tests` hook in conftest.py to achieve multiple runs per challenge.
- Modify `pytest_runtest_makereport` hook in conftest.py to handle multiple reporting calls per challenge.
- Refactor report_types.py, reports.py, process_report.ty to allow multiple results per challenge.
   - Calculate `success_percentage` from results of the current run, rather than all known results ever.
   - Add docstrings to a number of models in report_types.py.
   - Allow `None` as a success value, e.g. for runs that did not render any results before being cut off.
- Make SingletonReportManager thread-safe.
2024-01-22 17:16:55 +01:00

105 lines
3.1 KiB
Python

import logging
from abc import ABC, abstractmethod
from pathlib import Path
from typing import AsyncIterator, ClassVar, Optional
import pytest
from agent_protocol_client import AgentApi, Step
from colorama import Fore, Style
from pydantic import BaseModel, Field
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.data_types import Category, DifficultyLevel, EvalResult
logger = logging.getLogger(__name__)
class ChallengeInfo(BaseModel):
eval_id: str = ""
name: str
task: str
task_artifacts_dir: Optional[Path] = None
category: list[Category]
difficulty: Optional[DifficultyLevel] = None
description: Optional[str] = None
dependencies: list[str] = Field(default_factory=list)
reference_answer: Optional[str]
source_uri: str
"""Internal reference indicating the source of the challenge specification"""
class BaseChallenge(ABC):
"""
The base class and shared interface for all specific challenge implementations.
"""
info: ClassVar[ChallengeInfo]
@classmethod
@abstractmethod
def from_source_uri(cls, source_uri: str) -> type["BaseChallenge"]:
"""
Construct an individual challenge subclass from a suitable `source_uri` (as in
`ChallengeInfo.source_uri`).
"""
...
@abstractmethod
def test_method(
self,
config: AgentBenchmarkConfig,
request: pytest.FixtureRequest,
i_attempt: int,
) -> None:
"""
Test method for use by Pytest-based benchmark sessions. Should return normally
if the challenge passes, and raise a (preferably descriptive) error otherwise.
"""
...
@classmethod
async def run_challenge(
cls, config: AgentBenchmarkConfig, timeout: int
) -> AsyncIterator[Step]:
"""
Runs the challenge on the subject agent with the specified timeout.
Also prints basic challenge and status info to STDOUT.
Params:
config: The subject agent's benchmark config.
timeout: Timeout (seconds) after which to stop the run if not finished.
Yields:
Step: The steps generated by the agent for the challenge task.
"""
# avoid circular import
from agbenchmark.agent_api_interface import run_api_agent
print()
print(
f"{Fore.MAGENTA + Style.BRIGHT}{'='*24} "
f"Starting {cls.info.name} challenge"
f" {'='*24}{Style.RESET_ALL}"
)
print(f"{Fore.CYAN}Timeout:{Fore.RESET} {timeout} seconds")
print(f"{Fore.CYAN}Task:{Fore.RESET} {cls.info.task}")
print()
logger.debug(f"Starting {cls.info.name} challenge run")
i = 0
async for step in run_api_agent(
cls.info.task, config, timeout, cls.info.task_artifacts_dir
):
i += 1
print(f"[{cls.info.name}] - step {step.name} ({i}. request)")
yield step
logger.debug(f"Finished {cls.info.name} challenge run")
@classmethod
@abstractmethod
async def evaluate_task_state(
cls, agent: AgentApi, task_id: str
) -> list[EvalResult]:
...