mirror of
https://github.com/aljazceru/Auto-GPT.git
synced 2025-12-28 19:34:30 +01:00
54 lines
1.4 KiB
Python
54 lines
1.4 KiB
Python
import os
|
|
from typing import Optional
|
|
|
|
import requests
|
|
|
|
from agbenchmark.start_benchmark import BENCHMARK_START_TIME
|
|
|
|
|
|
def get_data_from_helicone(challenge: str) -> Optional[float]:
|
|
# Define the endpoint of your GraphQL server
|
|
url = "https://www.helicone.ai/api/graphql"
|
|
|
|
# Set the headers, usually you'd need to set the content type and possibly an authorization token
|
|
headers = {"authorization": "Bearer {os.environ.get('HELICONE_API_KEY')}"}
|
|
|
|
# Define the query, variables, and operation name
|
|
query = """
|
|
query ExampleQuery {
|
|
aggregatedHeliconeRequest {
|
|
cost
|
|
}
|
|
}
|
|
"""
|
|
|
|
variables = {
|
|
"filters": [
|
|
{
|
|
"property": {
|
|
"value": {"equals": os.environ.get("AGENT_NAME")},
|
|
"name": "agent",
|
|
}
|
|
},
|
|
{
|
|
"property": {
|
|
"value": {"equals": BENCHMARK_START_TIME},
|
|
"name": "benchmark_start_time",
|
|
}
|
|
},
|
|
{"property": {"value": {"equals": challenge}, "name": "challenge"}},
|
|
]
|
|
}
|
|
|
|
operation_name = "ExampleQuery"
|
|
|
|
# Make the request
|
|
response = requests.post(
|
|
url,
|
|
headers=headers,
|
|
json={"query": query, "variables": variables, "operationName": operation_name},
|
|
)
|
|
data = response.json()
|
|
|
|
return data.get("data", {}).get("aggregatedHeliconeRequest", {}).get("cost", None)
|