mirror of
https://github.com/aljazceru/Auto-GPT.git
synced 2026-01-14 11:34:20 +01:00
* Clean up prompt generation * Rename Performance Evaluations to Best Practices * Move specification of response format from system prompt to Agent.construct_base_prompt * Clean up PromptGenerator class * Add debug logging to AIConfig autogeneration * Clarify prompting and add support for multiple thought processes to Agent
307 lines
11 KiB
Python
307 lines
11 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import time
|
|
from datetime import datetime
|
|
from typing import TYPE_CHECKING, Any, Optional
|
|
|
|
if TYPE_CHECKING:
|
|
from autogpt.config import AIConfig, Config
|
|
from autogpt.llm.base import ChatModelResponse, ChatSequence
|
|
from autogpt.memory.vector import VectorMemory
|
|
from autogpt.models.command_registry import CommandRegistry
|
|
|
|
from autogpt.json_utils.utilities import extract_dict_from_response, validate_dict
|
|
from autogpt.llm.api_manager import ApiManager
|
|
from autogpt.llm.base import Message
|
|
from autogpt.llm.utils import count_string_tokens
|
|
from autogpt.logs import logger
|
|
from autogpt.logs.log_cycle import (
|
|
CURRENT_CONTEXT_FILE_NAME,
|
|
FULL_MESSAGE_HISTORY_FILE_NAME,
|
|
NEXT_ACTION_FILE_NAME,
|
|
USER_INPUT_FILE_NAME,
|
|
LogCycleHandler,
|
|
)
|
|
from autogpt.workspace import Workspace
|
|
|
|
from .base import AgentThoughts, BaseAgent, CommandArgs, CommandName
|
|
|
|
|
|
class Agent(BaseAgent):
|
|
"""Agent class for interacting with Auto-GPT."""
|
|
|
|
def __init__(
|
|
self,
|
|
ai_config: AIConfig,
|
|
command_registry: CommandRegistry,
|
|
memory: VectorMemory,
|
|
triggering_prompt: str,
|
|
config: Config,
|
|
cycle_budget: Optional[int] = None,
|
|
):
|
|
super().__init__(
|
|
ai_config=ai_config,
|
|
command_registry=command_registry,
|
|
config=config,
|
|
default_cycle_instruction=triggering_prompt,
|
|
cycle_budget=cycle_budget,
|
|
)
|
|
|
|
self.memory = memory
|
|
"""VectorMemoryProvider used to manage the agent's context (TODO)"""
|
|
|
|
self.workspace = Workspace(config.workspace_path, config.restrict_to_workspace)
|
|
"""Workspace that the agent has access to, e.g. for reading/writing files."""
|
|
|
|
self.created_at = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
"""Timestamp the agent was created; only used for structured debug logging."""
|
|
|
|
self.log_cycle_handler = LogCycleHandler()
|
|
"""LogCycleHandler for structured debug logging."""
|
|
|
|
def construct_base_prompt(self, *args, **kwargs) -> ChatSequence:
|
|
if kwargs.get("prepend_messages") is None:
|
|
kwargs["prepend_messages"] = []
|
|
|
|
# Clock
|
|
kwargs["prepend_messages"].append(
|
|
Message("system", f"The current time and date is {time.strftime('%c')}"),
|
|
)
|
|
|
|
# Add budget information (if any) to prompt
|
|
api_manager = ApiManager()
|
|
if api_manager.get_total_budget() > 0.0:
|
|
remaining_budget = (
|
|
api_manager.get_total_budget() - api_manager.get_total_cost()
|
|
)
|
|
if remaining_budget < 0:
|
|
remaining_budget = 0
|
|
|
|
budget_msg = Message(
|
|
"system",
|
|
f"Your remaining API budget is ${remaining_budget:.3f}"
|
|
+ (
|
|
" BUDGET EXCEEDED! SHUT DOWN!\n\n"
|
|
if remaining_budget == 0
|
|
else " Budget very nearly exceeded! Shut down gracefully!\n\n"
|
|
if remaining_budget < 0.005
|
|
else " Budget nearly exceeded. Finish up.\n\n"
|
|
if remaining_budget < 0.01
|
|
else ""
|
|
),
|
|
)
|
|
logger.debug(budget_msg)
|
|
|
|
if kwargs.get("append_messages") is None:
|
|
kwargs["append_messages"] = []
|
|
kwargs["append_messages"].append(budget_msg)
|
|
|
|
return super().construct_base_prompt(*args, **kwargs)
|
|
|
|
def on_before_think(self, *args, **kwargs) -> ChatSequence:
|
|
prompt = super().on_before_think(*args, **kwargs)
|
|
|
|
self.log_cycle_handler.log_count_within_cycle = 0
|
|
self.log_cycle_handler.log_cycle(
|
|
self.ai_config.ai_name,
|
|
self.created_at,
|
|
self.cycle_count,
|
|
self.history.raw(),
|
|
FULL_MESSAGE_HISTORY_FILE_NAME,
|
|
)
|
|
self.log_cycle_handler.log_cycle(
|
|
self.ai_config.ai_name,
|
|
self.created_at,
|
|
self.cycle_count,
|
|
prompt.raw(),
|
|
CURRENT_CONTEXT_FILE_NAME,
|
|
)
|
|
return prompt
|
|
|
|
def execute(
|
|
self,
|
|
command_name: str | None,
|
|
command_args: dict[str, str] | None,
|
|
user_input: str | None,
|
|
) -> str:
|
|
# Execute command
|
|
if command_name is not None and command_name.lower().startswith("error"):
|
|
result = f"Could not execute command: {command_name}{command_args}"
|
|
elif command_name == "human_feedback":
|
|
result = f"Human feedback: {user_input}"
|
|
self.log_cycle_handler.log_cycle(
|
|
self.ai_config.ai_name,
|
|
self.created_at,
|
|
self.cycle_count,
|
|
user_input,
|
|
USER_INPUT_FILE_NAME,
|
|
)
|
|
|
|
else:
|
|
for plugin in self.config.plugins:
|
|
if not plugin.can_handle_pre_command():
|
|
continue
|
|
command_name, arguments = plugin.pre_command(command_name, command_args)
|
|
command_result = execute_command(
|
|
command_name=command_name,
|
|
arguments=command_args,
|
|
agent=self,
|
|
)
|
|
result = f"Command {command_name} returned: " f"{command_result}"
|
|
|
|
result_tlength = count_string_tokens(str(command_result), self.llm.name)
|
|
memory_tlength = count_string_tokens(
|
|
str(self.history.summary_message()), self.llm.name
|
|
)
|
|
if result_tlength + memory_tlength > self.send_token_limit:
|
|
result = f"Failure: command {command_name} returned too much output. \
|
|
Do not execute this command again with the same arguments."
|
|
|
|
for plugin in self.config.plugins:
|
|
if not plugin.can_handle_post_command():
|
|
continue
|
|
result = plugin.post_command(command_name, result)
|
|
# Check if there's a result from the command append it to the message
|
|
if result is None:
|
|
self.history.add("system", "Unable to execute command", "action_result")
|
|
else:
|
|
self.history.add("system", result, "action_result")
|
|
|
|
return result
|
|
|
|
def parse_and_process_response(
|
|
self, llm_response: ChatModelResponse, *args, **kwargs
|
|
) -> tuple[CommandName | None, CommandArgs | None, AgentThoughts]:
|
|
if not llm_response.content:
|
|
raise SyntaxError("Assistant response has no text content")
|
|
|
|
assistant_reply_dict = extract_dict_from_response(llm_response.content)
|
|
|
|
valid, errors = validate_dict(assistant_reply_dict, self.config)
|
|
if not valid:
|
|
raise SyntaxError(
|
|
"Validation of response failed:\n "
|
|
+ ";\n ".join([str(e) for e in errors])
|
|
)
|
|
|
|
for plugin in self.config.plugins:
|
|
if not plugin.can_handle_post_planning():
|
|
continue
|
|
assistant_reply_dict = plugin.post_planning(assistant_reply_dict)
|
|
|
|
response = None, None, assistant_reply_dict
|
|
|
|
# Print Assistant thoughts
|
|
if assistant_reply_dict != {}:
|
|
# Get command name and arguments
|
|
try:
|
|
command_name, arguments = extract_command(
|
|
assistant_reply_dict, llm_response, self.config
|
|
)
|
|
response = command_name, arguments, assistant_reply_dict
|
|
except Exception as e:
|
|
logger.error("Error: \n", str(e))
|
|
|
|
self.log_cycle_handler.log_cycle(
|
|
self.ai_config.ai_name,
|
|
self.created_at,
|
|
self.cycle_count,
|
|
assistant_reply_dict,
|
|
NEXT_ACTION_FILE_NAME,
|
|
)
|
|
return response
|
|
|
|
|
|
def extract_command(
|
|
assistant_reply_json: dict, assistant_reply: ChatModelResponse, config: Config
|
|
) -> tuple[str, dict[str, str]]:
|
|
"""Parse the response and return the command name and arguments
|
|
|
|
Args:
|
|
assistant_reply_json (dict): The response object from the AI
|
|
assistant_reply (ChatModelResponse): The model response from the AI
|
|
config (Config): The config object
|
|
|
|
Returns:
|
|
tuple: The command name and arguments
|
|
|
|
Raises:
|
|
json.decoder.JSONDecodeError: If the response is not valid JSON
|
|
|
|
Exception: If any other error occurs
|
|
"""
|
|
if config.openai_functions:
|
|
if assistant_reply.function_call is None:
|
|
return "Error:", {"message": "No 'function_call' in assistant reply"}
|
|
assistant_reply_json["command"] = {
|
|
"name": assistant_reply.function_call.name,
|
|
"args": json.loads(assistant_reply.function_call.arguments),
|
|
}
|
|
try:
|
|
if "command" not in assistant_reply_json:
|
|
return "Error:", {"message": "Missing 'command' object in JSON"}
|
|
|
|
if not isinstance(assistant_reply_json, dict):
|
|
return (
|
|
"Error:",
|
|
{
|
|
"message": f"The previous message sent was not a dictionary {assistant_reply_json}"
|
|
},
|
|
)
|
|
|
|
command = assistant_reply_json["command"]
|
|
if not isinstance(command, dict):
|
|
return "Error:", {"message": "'command' object is not a dictionary"}
|
|
|
|
if "name" not in command:
|
|
return "Error:", {"message": "Missing 'name' field in 'command' object"}
|
|
|
|
command_name = command["name"]
|
|
|
|
# Use an empty dictionary if 'args' field is not present in 'command' object
|
|
arguments = command.get("args", {})
|
|
|
|
return command_name, arguments
|
|
except json.decoder.JSONDecodeError:
|
|
return "Error:", {"message": "Invalid JSON"}
|
|
# All other errors, return "Error: + error message"
|
|
except Exception as e:
|
|
return "Error:", {"message": str(e)}
|
|
|
|
|
|
def execute_command(
|
|
command_name: str,
|
|
arguments: dict[str, str],
|
|
agent: Agent,
|
|
) -> Any:
|
|
"""Execute the command and return the result
|
|
|
|
Args:
|
|
command_name (str): The name of the command to execute
|
|
arguments (dict): The arguments for the command
|
|
agent (Agent): The agent that is executing the command
|
|
|
|
Returns:
|
|
str: The result of the command
|
|
"""
|
|
try:
|
|
# Execute a native command with the same name or alias, if it exists
|
|
if command := agent.command_registry.get_command(command_name):
|
|
return command(**arguments, agent=agent)
|
|
|
|
# Handle non-native commands (e.g. from plugins)
|
|
for command in agent.ai_config.prompt_generator.commands:
|
|
if (
|
|
command_name == command.label.lower()
|
|
or command_name == command.name.lower()
|
|
):
|
|
return command.function(**arguments)
|
|
|
|
raise RuntimeError(
|
|
f"Cannot execute '{command_name}': unknown command."
|
|
" Do not try to use this command again."
|
|
)
|
|
except Exception as e:
|
|
return f"Error: {str(e)}"
|