Files
Auto-GPT/autogpt/llm/api_manager.py
Luke K (pr-0f3t) abb397e442 Release v0.4.1 (#4686)
Co-authored-by: Reinier van der Leer <github@pwuts.nl>
Co-authored-by: Nicholas Tindle <nick@ntindle.com>
Co-authored-by: Nicholas Tindle <nicktindle@outlook.com>
Co-authored-by: k-boikov <64261260+k-boikov@users.noreply.github.com>
Co-authored-by: merwanehamadi <merwanehamadi@gmail.com>
Co-authored-by: Merwane Hamadi <merwanehamadi@gmail.com>
Co-authored-by: Richard Beales <rich@richbeales.net>
Co-authored-by: Luke K <2609441+lc0rp@users.noreply.github.com>
Co-authored-by: Luke K (pr-0f3t) <2609441+lc0rp@users.noreply.github.com>
Co-authored-by: Erik Peterson <e@eriklp.com>
Co-authored-by: Auto-GPT-Bot <github-bot@agpt.co>
Co-authored-by: Benny van der Lans <49377421+bfalans@users.noreply.github.com>
Co-authored-by: Jan <jan-github@phobia.de>
Co-authored-by: Robin Richtsfeld <robin.richtsfeld@gmail.com>
Co-authored-by: Marc Bornträger <marc.borntraeger@gmail.com>
Co-authored-by: Stefan Ayala <stefanayala3266@gmail.com>
Co-authored-by: javableu <45064273+javableu@users.noreply.github.com>
Co-authored-by: DGdev91 <DGdev91@users.noreply.github.com>
Co-authored-by: Kinance <kinance@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: David <scenaristeur@gmail.com>
Co-authored-by: gravelBridge <john.tian31@gmail.com>
Fix Python CI "update cassettes" step (#4591)
fix CI (#4596)
Fix inverted logic for deny_command (#4563)
fix current_score.json generation (#4601)
Fix duckduckgo rate limiting (#4592)
Fix debug code challenge (#4632)
Fix issues with information retrieval challenge a (#4622)
fix issues with env configuration and .env.template (#4630)
Fix prompt issue causing 'No Command' issues and challenge to fail (#4623)
Fix benchmark logs (#4653)
Fix typo in docs/setup.md (#4613)
Fix run.sh shebang (#4561)
Fix autogpt docker image not working because missing prompt_settings (#4680)
Fix execute_command coming from plugins (#4730)
2023-06-19 12:41:40 -04:00

156 lines
4.8 KiB
Python

from __future__ import annotations
from typing import List, Optional
import openai
from openai import Model
from autogpt.config import Config
from autogpt.llm.base import CompletionModelInfo, MessageDict
from autogpt.llm.providers.openai import OPEN_AI_MODELS
from autogpt.logs import logger
from autogpt.singleton import Singleton
class ApiManager(metaclass=Singleton):
def __init__(self):
self.total_prompt_tokens = 0
self.total_completion_tokens = 0
self.total_cost = 0
self.total_budget = 0
self.models: Optional[list[Model]] = None
def reset(self):
self.total_prompt_tokens = 0
self.total_completion_tokens = 0
self.total_cost = 0
self.total_budget = 0.0
self.models = None
def create_chat_completion(
self,
messages: list[MessageDict],
model: str | None = None,
temperature: float = None,
max_tokens: int | None = None,
deployment_id=None,
):
"""
Create a chat completion and update the cost.
Args:
messages (list): The list of messages to send to the API.
model (str): The model to use for the API call.
temperature (float): The temperature to use for the API call.
max_tokens (int): The maximum number of tokens for the API call.
Returns:
str: The AI's response.
"""
cfg = Config()
if temperature is None:
temperature = cfg.temperature
if deployment_id is not None:
response = openai.ChatCompletion.create(
deployment_id=deployment_id,
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
api_key=cfg.openai_api_key,
)
else:
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
api_key=cfg.openai_api_key,
)
if not hasattr(response, "error"):
logger.debug(f"Response: {response}")
prompt_tokens = response.usage.prompt_tokens
completion_tokens = response.usage.completion_tokens
self.update_cost(prompt_tokens, completion_tokens, model)
return response
def update_cost(self, prompt_tokens, completion_tokens, model: str):
"""
Update the total cost, prompt tokens, and completion tokens.
Args:
prompt_tokens (int): The number of tokens used in the prompt.
completion_tokens (int): The number of tokens used in the completion.
model (str): The model used for the API call.
"""
# the .model property in API responses can contain version suffixes like -v2
model = model[:-3] if model.endswith("-v2") else model
model_info = OPEN_AI_MODELS[model]
self.total_prompt_tokens += prompt_tokens
self.total_completion_tokens += completion_tokens
self.total_cost += prompt_tokens * model_info.prompt_token_cost / 1000
if issubclass(type(model_info), CompletionModelInfo):
self.total_cost += (
completion_tokens * model_info.completion_token_cost / 1000
)
logger.debug(f"Total running cost: ${self.total_cost:.3f}")
def set_total_budget(self, total_budget):
"""
Sets the total user-defined budget for API calls.
Args:
total_budget (float): The total budget for API calls.
"""
self.total_budget = total_budget
def get_total_prompt_tokens(self):
"""
Get the total number of prompt tokens.
Returns:
int: The total number of prompt tokens.
"""
return self.total_prompt_tokens
def get_total_completion_tokens(self):
"""
Get the total number of completion tokens.
Returns:
int: The total number of completion tokens.
"""
return self.total_completion_tokens
def get_total_cost(self):
"""
Get the total cost of API calls.
Returns:
float: The total cost of API calls.
"""
return self.total_cost
def get_total_budget(self):
"""
Get the total user-defined budget for API calls.
Returns:
float: The total budget for API calls.
"""
return self.total_budget
def get_models(self) -> List[Model]:
"""
Get list of available GPT models.
Returns:
list: List of available GPT models.
"""
if self.models is None:
all_models = openai.Model.list()["data"]
self.models = [model for model in all_models if "gpt" in model["id"]]
return self.models