mirror of
https://github.com/aljazceru/Auto-GPT.git
synced 2025-12-18 14:34:23 +01:00
467 lines
17 KiB
Python
467 lines
17 KiB
Python
"""Handles loading of plugins."""
|
|
import importlib
|
|
import json
|
|
import os
|
|
import zipfile
|
|
import openapi_python_client
|
|
import requests
|
|
import abc
|
|
|
|
from pathlib import Path
|
|
from typing import TypeVar
|
|
from urllib.parse import urlparse
|
|
from zipimport import zipimporter
|
|
from openapi_python_client.cli import Config as OpenAPIConfig
|
|
from typing import Any, Dict, List, Optional, Tuple, TypedDict
|
|
from abstract_singleton import AbstractSingleton, Singleton
|
|
|
|
|
|
from autogpt.config import Config
|
|
|
|
PromptGenerator = TypeVar("PromptGenerator")
|
|
|
|
|
|
class Message(TypedDict):
|
|
role: str
|
|
content: str
|
|
|
|
|
|
class BaseOpenAIPlugin():
|
|
"""
|
|
This is a template for Auto-GPT plugins.
|
|
"""
|
|
|
|
def __init__(self, manifests_specs_clients: dict):
|
|
# super().__init__()
|
|
self._name = manifests_specs_clients["manifest"]["name_for_model"]
|
|
self._version = manifests_specs_clients["manifest"]["schema_version"]
|
|
self._description = manifests_specs_clients["manifest"]["description_for_model"]
|
|
self.client = manifests_specs_clients["client"]
|
|
self.manifest = manifests_specs_clients["manifest"]
|
|
self.openapi_spec = manifests_specs_clients["openapi_spec"]
|
|
|
|
def can_handle_on_response(self) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the on_response method.
|
|
Returns:
|
|
bool: True if the plugin can handle the on_response method."""
|
|
return False
|
|
|
|
def on_response(self, response: str, *args, **kwargs) -> str:
|
|
"""This method is called when a response is received from the model."""
|
|
pass
|
|
|
|
def can_handle_post_prompt(self) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the post_prompt method.
|
|
Returns:
|
|
bool: True if the plugin can handle the post_prompt method."""
|
|
return False
|
|
|
|
def post_prompt(self, prompt: PromptGenerator) -> PromptGenerator:
|
|
"""This method is called just after the generate_prompt is called,
|
|
but actually before the prompt is generated.
|
|
Args:
|
|
prompt (PromptGenerator): The prompt generator.
|
|
Returns:
|
|
PromptGenerator: The prompt generator.
|
|
"""
|
|
pass
|
|
|
|
def can_handle_on_planning(self) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the on_planning method.
|
|
Returns:
|
|
bool: True if the plugin can handle the on_planning method."""
|
|
return False
|
|
|
|
def on_planning(
|
|
self, prompt: PromptGenerator, messages: List[Message]
|
|
) -> Optional[str]:
|
|
"""This method is called before the planning chat completion is done.
|
|
Args:
|
|
prompt (PromptGenerator): The prompt generator.
|
|
messages (List[str]): The list of messages.
|
|
"""
|
|
pass
|
|
|
|
def can_handle_post_planning(self) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the post_planning method.
|
|
Returns:
|
|
bool: True if the plugin can handle the post_planning method."""
|
|
return False
|
|
|
|
def post_planning(self, response: str) -> str:
|
|
"""This method is called after the planning chat completion is done.
|
|
Args:
|
|
response (str): The response.
|
|
Returns:
|
|
str: The resulting response.
|
|
"""
|
|
pass
|
|
|
|
def can_handle_pre_instruction(self) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the pre_instruction method.
|
|
Returns:
|
|
bool: True if the plugin can handle the pre_instruction method."""
|
|
return False
|
|
|
|
def pre_instruction(self, messages: List[Message]) -> List[Message]:
|
|
"""This method is called before the instruction chat is done.
|
|
Args:
|
|
messages (List[Message]): The list of context messages.
|
|
Returns:
|
|
List[Message]: The resulting list of messages.
|
|
"""
|
|
pass
|
|
|
|
def can_handle_on_instruction(self) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the on_instruction method.
|
|
Returns:
|
|
bool: True if the plugin can handle the on_instruction method."""
|
|
return False
|
|
|
|
def on_instruction(self, messages: List[Message]) -> Optional[str]:
|
|
"""This method is called when the instruction chat is done.
|
|
Args:
|
|
messages (List[Message]): The list of context messages.
|
|
Returns:
|
|
Optional[str]: The resulting message.
|
|
"""
|
|
pass
|
|
|
|
def can_handle_post_instruction(self) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the post_instruction method.
|
|
Returns:
|
|
bool: True if the plugin can handle the post_instruction method."""
|
|
return False
|
|
|
|
def post_instruction(self, response: str) -> str:
|
|
"""This method is called after the instruction chat is done.
|
|
Args:
|
|
response (str): The response.
|
|
Returns:
|
|
str: The resulting response.
|
|
"""
|
|
pass
|
|
|
|
def can_handle_pre_command(self) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the pre_command method.
|
|
Returns:
|
|
bool: True if the plugin can handle the pre_command method."""
|
|
return False
|
|
|
|
def pre_command(
|
|
self, command_name: str, arguments: Dict[str, Any]
|
|
) -> Tuple[str, Dict[str, Any]]:
|
|
"""This method is called before the command is executed.
|
|
Args:
|
|
command_name (str): The command name.
|
|
arguments (Dict[str, Any]): The arguments.
|
|
Returns:
|
|
Tuple[str, Dict[str, Any]]: The command name and the arguments.
|
|
"""
|
|
pass
|
|
|
|
def can_handle_post_command(self) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the post_command method.
|
|
Returns:
|
|
bool: True if the plugin can handle the post_command method."""
|
|
return False
|
|
|
|
def post_command(self, command_name: str, response: str) -> str:
|
|
"""This method is called after the command is executed.
|
|
Args:
|
|
command_name (str): The command name.
|
|
response (str): The response.
|
|
Returns:
|
|
str: The resulting response.
|
|
"""
|
|
pass
|
|
|
|
def can_handle_chat_completion(
|
|
self, messages: Dict[Any, Any], model: str, temperature: float, max_tokens: int
|
|
) -> bool:
|
|
"""This method is called to check that the plugin can
|
|
handle the chat_completion method.
|
|
Args:
|
|
messages (List[Message]): The messages.
|
|
model (str): The model name.
|
|
temperature (float): The temperature.
|
|
max_tokens (int): The max tokens.
|
|
Returns:
|
|
bool: True if the plugin can handle the chat_completion method."""
|
|
return False
|
|
|
|
def handle_chat_completion(
|
|
self, messages: List[Message], model: str, temperature: float, max_tokens: int
|
|
) -> str:
|
|
"""This method is called when the chat completion is done.
|
|
Args:
|
|
messages (List[Message]): The messages.
|
|
model (str): The model name.
|
|
temperature (float): The temperature.
|
|
max_tokens (int): The max tokens.
|
|
Returns:
|
|
str: The resulting response.
|
|
"""
|
|
pass
|
|
|
|
|
|
def inspect_zip_for_module(zip_path: str, debug: bool = False) -> Optional[str]:
|
|
"""
|
|
Inspect a zipfile for a module.
|
|
|
|
Args:
|
|
zip_path (str): Path to the zipfile.
|
|
debug (bool, optional): Enable debug logging. Defaults to False.
|
|
|
|
Returns:
|
|
Optional[str]: The name of the module if found, else None.
|
|
"""
|
|
with zipfile.ZipFile(zip_path, "r") as zfile:
|
|
for name in zfile.namelist():
|
|
if name.endswith("__init__.py"):
|
|
if debug:
|
|
print(f"Found module '{name}' in the zipfile at: {name}")
|
|
return name
|
|
if debug:
|
|
print(f"Module '__init__.py' not found in the zipfile @ {zip_path}.")
|
|
return None
|
|
|
|
|
|
def write_dict_to_json_file(data: dict, file_path: str):
|
|
"""
|
|
Write a dictionary to a JSON file.
|
|
Args:
|
|
data (dict): Dictionary to write.
|
|
file_path (str): Path to the file.
|
|
"""
|
|
with open(file_path, 'w') as file:
|
|
json.dump(data, file, indent=4)
|
|
|
|
|
|
def fetch_openai_plugins_manifest_and_spec(cfg: Config) -> dict:
|
|
"""
|
|
Fetch the manifest for a list of OpenAI plugins.
|
|
Args:
|
|
urls (List): List of URLs to fetch.
|
|
Returns:
|
|
dict: per url dictionary of manifest and spec.
|
|
"""
|
|
# TODO add directory scan
|
|
manifests = {}
|
|
for url in cfg.plugins_openai:
|
|
openai_plugin_client_dir = f"{cfg.plugins_dir}/openai/{urlparse(url).netloc}"
|
|
create_directory_if_not_exists(openai_plugin_client_dir)
|
|
if not os.path.exists(f'{openai_plugin_client_dir}/ai-plugin.json'):
|
|
try:
|
|
response = requests.get(f"{url}/.well-known/ai-plugin.json")
|
|
if response.status_code == 200:
|
|
manifest = response.json()
|
|
if manifest["schema_version"] != "v1":
|
|
print(f"Unsupported manifest version: {manifest['schem_version']} for {url}")
|
|
continue
|
|
if manifest["api"]["type"] != "openapi":
|
|
print(f"Unsupported API type: {manifest['api']['type']} for {url}")
|
|
continue
|
|
write_dict_to_json_file(manifest, f'{openai_plugin_client_dir}/ai-plugin.json')
|
|
else:
|
|
print(f"Failed to fetch manifest for {url}: {response.status_code}")
|
|
except requests.exceptions.RequestException as e:
|
|
print(f"Error while requesting manifest from {url}: {e}")
|
|
else:
|
|
print(f"Manifest for {url} already exists")
|
|
manifest = json.load(open(f'{openai_plugin_client_dir}/ai-plugin.json'))
|
|
if not os.path.exists(f'{openai_plugin_client_dir}/openapi.json'):
|
|
openapi_spec = openapi_python_client._get_document(url=manifest["api"]["url"], path=None, timeout=5)
|
|
write_dict_to_json_file(openapi_spec, f'{openai_plugin_client_dir}/openapi.json')
|
|
else:
|
|
print(f"OpenAPI spec for {url} already exists")
|
|
openapi_spec = json.load(open(f'{openai_plugin_client_dir}/openapi.json'))
|
|
manifests[url] = {
|
|
'manifest': manifest,
|
|
'openapi_spec': openapi_spec
|
|
}
|
|
return manifests
|
|
|
|
|
|
def create_directory_if_not_exists(directory_path: str) -> bool:
|
|
"""
|
|
Create a directory if it does not exist.
|
|
Args:
|
|
directory_path (str): Path to the directory.
|
|
Returns:
|
|
bool: True if the directory was created, else False.
|
|
"""
|
|
if not os.path.exists(directory_path):
|
|
try:
|
|
os.makedirs(directory_path)
|
|
print(f"Created directory: {directory_path}")
|
|
return True
|
|
except OSError as e:
|
|
print(f"Error creating directory {directory_path}: {e}")
|
|
return False
|
|
else:
|
|
print(f"Directory {directory_path} already exists")
|
|
return True
|
|
|
|
|
|
def initialize_openai_plugins(manifests_specs: dict, cfg: Config, debug: bool = False) -> dict:
|
|
"""
|
|
Initialize OpenAI plugins.
|
|
Args:
|
|
manifests_specs (dict): per url dictionary of manifest and spec.
|
|
cfg (Config): Config instance including plugins config
|
|
debug (bool, optional): Enable debug logging. Defaults to False.
|
|
Returns:
|
|
dict: per url dictionary of manifest, spec and client.
|
|
"""
|
|
openai_plugins_dir = f'{cfg.plugins_dir}/openai'
|
|
if create_directory_if_not_exists(openai_plugins_dir):
|
|
for url, manifest_spec in manifests_specs.items():
|
|
openai_plugin_client_dir = f'{openai_plugins_dir}/{urlparse(url).hostname}'
|
|
_meta_option = openapi_python_client.MetaType.SETUP,
|
|
_config = OpenAPIConfig(**{
|
|
'project_name_override': 'client',
|
|
'package_name_override': 'client',
|
|
})
|
|
prev_cwd = Path.cwd()
|
|
os.chdir(openai_plugin_client_dir)
|
|
Path('ai-plugin.json')
|
|
if not os.path.exists('client'):
|
|
client_results = openapi_python_client.create_new_client(
|
|
url=manifest_spec['manifest']['api']['url'],
|
|
path=None,
|
|
meta=_meta_option,
|
|
config=_config,
|
|
)
|
|
if client_results:
|
|
print(f"Error creating OpenAPI client: {client_results[0].header} \n"
|
|
f" details: {client_results[0].detail}")
|
|
continue
|
|
spec = importlib.util.spec_from_file_location('client', 'client/client/client.py')
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
client = module.Client(base_url=url)
|
|
os.chdir(prev_cwd)
|
|
manifest_spec['client'] = client
|
|
return manifests_specs
|
|
|
|
|
|
def instantiate_openai_plugin_clients(manifests_specs_clients: dict, cfg: Config, debug: bool = False) -> dict:
|
|
"""
|
|
Instantiates BaseOpenAIPluginClient instances for each OpenAI plugin.
|
|
Args:
|
|
manifests_specs_clients (dict): per url dictionary of manifest, spec and client.
|
|
cfg (Config): Config instance including plugins config
|
|
debug (bool, optional): Enable debug logging. Defaults to False.
|
|
Returns:
|
|
plugins (dict): per url dictionary of BaseOpenAIPluginClient instances.
|
|
|
|
"""
|
|
plugins = {}
|
|
for url, manifest_spec_client in manifests_specs_clients.items():
|
|
plugins[url] = BaseOpenAIPluginClient(
|
|
manifest=manifest_spec_client['manifest'],
|
|
openapi_spec=manifest_spec_client['openapi_spec'],
|
|
client=manifest_spec_client['client'],
|
|
cfg=cfg,
|
|
debug=debug
|
|
)
|
|
return plugins
|
|
|
|
|
|
def scan_plugins(cfg: Config, debug: bool = False) -> List[Tuple[str, Path]]:
|
|
"""Scan the plugins directory for plugins.
|
|
|
|
Args:
|
|
cfg (Config): Config instance including plugins config
|
|
debug (bool, optional): Enable debug logging. Defaults to False.
|
|
|
|
Returns:
|
|
List[Tuple[str, Path]]: List of plugins.
|
|
"""
|
|
plugins = []
|
|
# Generic plugins
|
|
plugins_path_path = Path(cfg.plugins_dir)
|
|
for plugin in plugins_path_path.glob("*.zip"):
|
|
if module := inspect_zip_for_module(str(plugin), debug):
|
|
plugins.append((module, plugin))
|
|
# OpenAI plugins
|
|
if cfg.plugins_openai:
|
|
manifests_specs = fetch_openai_plugins_manifest_and_spec(cfg)
|
|
if manifests_specs.keys():
|
|
manifests_specs_clients = initialize_openai_plugins(manifests_specs, cfg, debug)
|
|
for url, openai_plugin_meta in manifests_specs_clients.items():
|
|
plugin = BaseOpenAIPlugin(openai_plugin_meta)
|
|
plugins.append((plugin, url))
|
|
|
|
|
|
return plugins
|
|
|
|
|
|
def blacklist_whitelist_check(plugins: List[AbstractSingleton], cfg: Config):
|
|
"""Check if the plugin is in the whitelist or blacklist.
|
|
|
|
Args:
|
|
plugins (List[Tuple[str, Path]]): List of plugins.
|
|
cfg (Config): Config object.
|
|
|
|
Returns:
|
|
List[Tuple[str, Path]]: List of plugins.
|
|
"""
|
|
loaded_plugins = []
|
|
for plugin in plugins:
|
|
if plugin.__name__ in cfg.plugins_blacklist:
|
|
continue
|
|
if plugin.__name__ in cfg.plugins_whitelist:
|
|
loaded_plugins.append(plugin())
|
|
else:
|
|
ack = input(
|
|
f"WARNNG Plugin {plugin.__name__} found. But not in the"
|
|
" whitelist... Load? (y/n): "
|
|
)
|
|
if ack.lower() == "y":
|
|
loaded_plugins.append(plugin())
|
|
|
|
if loaded_plugins:
|
|
print(f"\nPlugins found: {len(loaded_plugins)}\n" "--------------------")
|
|
for plugin in loaded_plugins:
|
|
print(f"{plugin._name}: {plugin._version} - {plugin._description}")
|
|
return loaded_plugins
|
|
|
|
|
|
def load_plugins(cfg: Config = Config(), debug: bool = False) -> List[object]:
|
|
"""Load plugins from the plugins directory.
|
|
|
|
Args:
|
|
cfg (Config): Config instance including plugins config
|
|
debug (bool, optional): Enable debug logging. Defaults to False.
|
|
Returns:
|
|
List[AbstractSingleton]: List of plugins initialized.
|
|
"""
|
|
plugins = scan_plugins(cfg)
|
|
plugin_modules = []
|
|
for module, plugin in plugins:
|
|
plugin = Path(plugin)
|
|
module = Path(module)
|
|
if debug:
|
|
print(f"Plugin: {plugin} Module: {module}")
|
|
zipped_package = zipimporter(plugin)
|
|
zipped_module = zipped_package.load_module(str(module.parent))
|
|
for key in dir(zipped_module):
|
|
if key.startswith("__"):
|
|
continue
|
|
a_module = getattr(zipped_module, key)
|
|
a_keys = dir(a_module)
|
|
if "_abc_impl" in a_keys and a_module.__name__ != "AutoGPTPluginTemplate":
|
|
plugin_modules.append(a_module)
|
|
return blacklist_whitelist_check(plugin_modules, cfg)
|