Files
Auto-GPT/autogpt/plugins.py
2023-04-17 17:13:53 -07:00

467 lines
17 KiB
Python

"""Handles loading of plugins."""
import importlib
import json
import os
import zipfile
import openapi_python_client
import requests
import abc
from pathlib import Path
from typing import TypeVar
from urllib.parse import urlparse
from zipimport import zipimporter
from openapi_python_client.cli import Config as OpenAPIConfig
from typing import Any, Dict, List, Optional, Tuple, TypedDict
from abstract_singleton import AbstractSingleton, Singleton
from autogpt.config import Config
PromptGenerator = TypeVar("PromptGenerator")
class Message(TypedDict):
role: str
content: str
class BaseOpenAIPlugin():
"""
This is a template for Auto-GPT plugins.
"""
def __init__(self, manifests_specs_clients: dict):
# super().__init__()
self._name = manifests_specs_clients["manifest"]["name_for_model"]
self._version = manifests_specs_clients["manifest"]["schema_version"]
self._description = manifests_specs_clients["manifest"]["description_for_model"]
self.client = manifests_specs_clients["client"]
self.manifest = manifests_specs_clients["manifest"]
self.openapi_spec = manifests_specs_clients["openapi_spec"]
def can_handle_on_response(self) -> bool:
"""This method is called to check that the plugin can
handle the on_response method.
Returns:
bool: True if the plugin can handle the on_response method."""
return False
def on_response(self, response: str, *args, **kwargs) -> str:
"""This method is called when a response is received from the model."""
pass
def can_handle_post_prompt(self) -> bool:
"""This method is called to check that the plugin can
handle the post_prompt method.
Returns:
bool: True if the plugin can handle the post_prompt method."""
return False
def post_prompt(self, prompt: PromptGenerator) -> PromptGenerator:
"""This method is called just after the generate_prompt is called,
but actually before the prompt is generated.
Args:
prompt (PromptGenerator): The prompt generator.
Returns:
PromptGenerator: The prompt generator.
"""
pass
def can_handle_on_planning(self) -> bool:
"""This method is called to check that the plugin can
handle the on_planning method.
Returns:
bool: True if the plugin can handle the on_planning method."""
return False
def on_planning(
self, prompt: PromptGenerator, messages: List[Message]
) -> Optional[str]:
"""This method is called before the planning chat completion is done.
Args:
prompt (PromptGenerator): The prompt generator.
messages (List[str]): The list of messages.
"""
pass
def can_handle_post_planning(self) -> bool:
"""This method is called to check that the plugin can
handle the post_planning method.
Returns:
bool: True if the plugin can handle the post_planning method."""
return False
def post_planning(self, response: str) -> str:
"""This method is called after the planning chat completion is done.
Args:
response (str): The response.
Returns:
str: The resulting response.
"""
pass
def can_handle_pre_instruction(self) -> bool:
"""This method is called to check that the plugin can
handle the pre_instruction method.
Returns:
bool: True if the plugin can handle the pre_instruction method."""
return False
def pre_instruction(self, messages: List[Message]) -> List[Message]:
"""This method is called before the instruction chat is done.
Args:
messages (List[Message]): The list of context messages.
Returns:
List[Message]: The resulting list of messages.
"""
pass
def can_handle_on_instruction(self) -> bool:
"""This method is called to check that the plugin can
handle the on_instruction method.
Returns:
bool: True if the plugin can handle the on_instruction method."""
return False
def on_instruction(self, messages: List[Message]) -> Optional[str]:
"""This method is called when the instruction chat is done.
Args:
messages (List[Message]): The list of context messages.
Returns:
Optional[str]: The resulting message.
"""
pass
def can_handle_post_instruction(self) -> bool:
"""This method is called to check that the plugin can
handle the post_instruction method.
Returns:
bool: True if the plugin can handle the post_instruction method."""
return False
def post_instruction(self, response: str) -> str:
"""This method is called after the instruction chat is done.
Args:
response (str): The response.
Returns:
str: The resulting response.
"""
pass
def can_handle_pre_command(self) -> bool:
"""This method is called to check that the plugin can
handle the pre_command method.
Returns:
bool: True if the plugin can handle the pre_command method."""
return False
def pre_command(
self, command_name: str, arguments: Dict[str, Any]
) -> Tuple[str, Dict[str, Any]]:
"""This method is called before the command is executed.
Args:
command_name (str): The command name.
arguments (Dict[str, Any]): The arguments.
Returns:
Tuple[str, Dict[str, Any]]: The command name and the arguments.
"""
pass
def can_handle_post_command(self) -> bool:
"""This method is called to check that the plugin can
handle the post_command method.
Returns:
bool: True if the plugin can handle the post_command method."""
return False
def post_command(self, command_name: str, response: str) -> str:
"""This method is called after the command is executed.
Args:
command_name (str): The command name.
response (str): The response.
Returns:
str: The resulting response.
"""
pass
def can_handle_chat_completion(
self, messages: Dict[Any, Any], model: str, temperature: float, max_tokens: int
) -> bool:
"""This method is called to check that the plugin can
handle the chat_completion method.
Args:
messages (List[Message]): The messages.
model (str): The model name.
temperature (float): The temperature.
max_tokens (int): The max tokens.
Returns:
bool: True if the plugin can handle the chat_completion method."""
return False
def handle_chat_completion(
self, messages: List[Message], model: str, temperature: float, max_tokens: int
) -> str:
"""This method is called when the chat completion is done.
Args:
messages (List[Message]): The messages.
model (str): The model name.
temperature (float): The temperature.
max_tokens (int): The max tokens.
Returns:
str: The resulting response.
"""
pass
def inspect_zip_for_module(zip_path: str, debug: bool = False) -> Optional[str]:
"""
Inspect a zipfile for a module.
Args:
zip_path (str): Path to the zipfile.
debug (bool, optional): Enable debug logging. Defaults to False.
Returns:
Optional[str]: The name of the module if found, else None.
"""
with zipfile.ZipFile(zip_path, "r") as zfile:
for name in zfile.namelist():
if name.endswith("__init__.py"):
if debug:
print(f"Found module '{name}' in the zipfile at: {name}")
return name
if debug:
print(f"Module '__init__.py' not found in the zipfile @ {zip_path}.")
return None
def write_dict_to_json_file(data: dict, file_path: str):
"""
Write a dictionary to a JSON file.
Args:
data (dict): Dictionary to write.
file_path (str): Path to the file.
"""
with open(file_path, 'w') as file:
json.dump(data, file, indent=4)
def fetch_openai_plugins_manifest_and_spec(cfg: Config) -> dict:
"""
Fetch the manifest for a list of OpenAI plugins.
Args:
urls (List): List of URLs to fetch.
Returns:
dict: per url dictionary of manifest and spec.
"""
# TODO add directory scan
manifests = {}
for url in cfg.plugins_openai:
openai_plugin_client_dir = f"{cfg.plugins_dir}/openai/{urlparse(url).netloc}"
create_directory_if_not_exists(openai_plugin_client_dir)
if not os.path.exists(f'{openai_plugin_client_dir}/ai-plugin.json'):
try:
response = requests.get(f"{url}/.well-known/ai-plugin.json")
if response.status_code == 200:
manifest = response.json()
if manifest["schema_version"] != "v1":
print(f"Unsupported manifest version: {manifest['schem_version']} for {url}")
continue
if manifest["api"]["type"] != "openapi":
print(f"Unsupported API type: {manifest['api']['type']} for {url}")
continue
write_dict_to_json_file(manifest, f'{openai_plugin_client_dir}/ai-plugin.json')
else:
print(f"Failed to fetch manifest for {url}: {response.status_code}")
except requests.exceptions.RequestException as e:
print(f"Error while requesting manifest from {url}: {e}")
else:
print(f"Manifest for {url} already exists")
manifest = json.load(open(f'{openai_plugin_client_dir}/ai-plugin.json'))
if not os.path.exists(f'{openai_plugin_client_dir}/openapi.json'):
openapi_spec = openapi_python_client._get_document(url=manifest["api"]["url"], path=None, timeout=5)
write_dict_to_json_file(openapi_spec, f'{openai_plugin_client_dir}/openapi.json')
else:
print(f"OpenAPI spec for {url} already exists")
openapi_spec = json.load(open(f'{openai_plugin_client_dir}/openapi.json'))
manifests[url] = {
'manifest': manifest,
'openapi_spec': openapi_spec
}
return manifests
def create_directory_if_not_exists(directory_path: str) -> bool:
"""
Create a directory if it does not exist.
Args:
directory_path (str): Path to the directory.
Returns:
bool: True if the directory was created, else False.
"""
if not os.path.exists(directory_path):
try:
os.makedirs(directory_path)
print(f"Created directory: {directory_path}")
return True
except OSError as e:
print(f"Error creating directory {directory_path}: {e}")
return False
else:
print(f"Directory {directory_path} already exists")
return True
def initialize_openai_plugins(manifests_specs: dict, cfg: Config, debug: bool = False) -> dict:
"""
Initialize OpenAI plugins.
Args:
manifests_specs (dict): per url dictionary of manifest and spec.
cfg (Config): Config instance including plugins config
debug (bool, optional): Enable debug logging. Defaults to False.
Returns:
dict: per url dictionary of manifest, spec and client.
"""
openai_plugins_dir = f'{cfg.plugins_dir}/openai'
if create_directory_if_not_exists(openai_plugins_dir):
for url, manifest_spec in manifests_specs.items():
openai_plugin_client_dir = f'{openai_plugins_dir}/{urlparse(url).hostname}'
_meta_option = openapi_python_client.MetaType.SETUP,
_config = OpenAPIConfig(**{
'project_name_override': 'client',
'package_name_override': 'client',
})
prev_cwd = Path.cwd()
os.chdir(openai_plugin_client_dir)
Path('ai-plugin.json')
if not os.path.exists('client'):
client_results = openapi_python_client.create_new_client(
url=manifest_spec['manifest']['api']['url'],
path=None,
meta=_meta_option,
config=_config,
)
if client_results:
print(f"Error creating OpenAPI client: {client_results[0].header} \n"
f" details: {client_results[0].detail}")
continue
spec = importlib.util.spec_from_file_location('client', 'client/client/client.py')
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
client = module.Client(base_url=url)
os.chdir(prev_cwd)
manifest_spec['client'] = client
return manifests_specs
def instantiate_openai_plugin_clients(manifests_specs_clients: dict, cfg: Config, debug: bool = False) -> dict:
"""
Instantiates BaseOpenAIPluginClient instances for each OpenAI plugin.
Args:
manifests_specs_clients (dict): per url dictionary of manifest, spec and client.
cfg (Config): Config instance including plugins config
debug (bool, optional): Enable debug logging. Defaults to False.
Returns:
plugins (dict): per url dictionary of BaseOpenAIPluginClient instances.
"""
plugins = {}
for url, manifest_spec_client in manifests_specs_clients.items():
plugins[url] = BaseOpenAIPluginClient(
manifest=manifest_spec_client['manifest'],
openapi_spec=manifest_spec_client['openapi_spec'],
client=manifest_spec_client['client'],
cfg=cfg,
debug=debug
)
return plugins
def scan_plugins(cfg: Config, debug: bool = False) -> List[Tuple[str, Path]]:
"""Scan the plugins directory for plugins.
Args:
cfg (Config): Config instance including plugins config
debug (bool, optional): Enable debug logging. Defaults to False.
Returns:
List[Tuple[str, Path]]: List of plugins.
"""
plugins = []
# Generic plugins
plugins_path_path = Path(cfg.plugins_dir)
for plugin in plugins_path_path.glob("*.zip"):
if module := inspect_zip_for_module(str(plugin), debug):
plugins.append((module, plugin))
# OpenAI plugins
if cfg.plugins_openai:
manifests_specs = fetch_openai_plugins_manifest_and_spec(cfg)
if manifests_specs.keys():
manifests_specs_clients = initialize_openai_plugins(manifests_specs, cfg, debug)
for url, openai_plugin_meta in manifests_specs_clients.items():
plugin = BaseOpenAIPlugin(openai_plugin_meta)
plugins.append((plugin, url))
return plugins
def blacklist_whitelist_check(plugins: List[AbstractSingleton], cfg: Config):
"""Check if the plugin is in the whitelist or blacklist.
Args:
plugins (List[Tuple[str, Path]]): List of plugins.
cfg (Config): Config object.
Returns:
List[Tuple[str, Path]]: List of plugins.
"""
loaded_plugins = []
for plugin in plugins:
if plugin.__name__ in cfg.plugins_blacklist:
continue
if plugin.__name__ in cfg.plugins_whitelist:
loaded_plugins.append(plugin())
else:
ack = input(
f"WARNNG Plugin {plugin.__name__} found. But not in the"
" whitelist... Load? (y/n): "
)
if ack.lower() == "y":
loaded_plugins.append(plugin())
if loaded_plugins:
print(f"\nPlugins found: {len(loaded_plugins)}\n" "--------------------")
for plugin in loaded_plugins:
print(f"{plugin._name}: {plugin._version} - {plugin._description}")
return loaded_plugins
def load_plugins(cfg: Config = Config(), debug: bool = False) -> List[object]:
"""Load plugins from the plugins directory.
Args:
cfg (Config): Config instance including plugins config
debug (bool, optional): Enable debug logging. Defaults to False.
Returns:
List[AbstractSingleton]: List of plugins initialized.
"""
plugins = scan_plugins(cfg)
plugin_modules = []
for module, plugin in plugins:
plugin = Path(plugin)
module = Path(module)
if debug:
print(f"Plugin: {plugin} Module: {module}")
zipped_package = zipimporter(plugin)
zipped_module = zipped_package.load_module(str(module.parent))
for key in dir(zipped_module):
if key.startswith("__"):
continue
a_module = getattr(zipped_module, key)
a_keys = dir(a_module)
if "_abc_impl" in a_keys and a_module.__name__ != "AutoGPTPluginTemplate":
plugin_modules.append(a_module)
return blacklist_whitelist_check(plugin_modules, cfg)