Files
Auto-GPT/autogpt/api_manager.py
Vwing d6ef9d1b5d Make Auto-GPT aware of its running cost (#762)
* Implemented running cost counter for chat completions

This data is known to the AI as additional system context, and is printed out to the user

* Added comments to api_manager.py

* Added user-defined API budget.

The user is now prompted if they want to give the AI a budget for API calls. If they enter nothing, there is no monetary limit, but if they define a budget then the AI will be told to shut down gracefully once it has come within 1 cent of its limit, and to shut down immediately once it has exceeded its limit. If a budget is defined, Auto-GPT is always aware of how much it was given and how much remains to be spent.

* Chat completion calls are now done through api_manager. Total running cost is printed.

* Implemented api budget setting and tracking

User can now configure a maximum api budget, and the AI is aware of that and its remaining budget. The AI is instructed to shut down when exceeding the budget.

* Update autogpt/api_manager.py

Change "per token" to "per 1000 tokens" in a comment on the api cost

Co-authored-by: Rob Luke <code@robertluke.net>

* Fixed lint errors

* Include embedding costs

* Add embedding completion cost

* lint

* Added 'requires_api_key' decorator to test_commands.py, switched to a valid chat completions model

* Refactor API manager, add debug mode, and add tests

- Extract model costs to  to avoid duplication
- Add debug mode parameter to ApiManager class
- Move debug mode configuration to
- Log AI response and budget messages in debug mode
- Implement 'test_api_manager.py'

* Fixed test_setup failing. An extra user input is needed for api budget

* Linting

---------

Co-authored-by: Rob Luke <code@robertluke.net>
Co-authored-by: Nicholas Tindle <nick@ntindle.com>
2023-04-23 16:04:31 -05:00

159 lines
4.7 KiB
Python

from typing import List
import openai
from autogpt.config import Config
from autogpt.logs import logger
from autogpt.modelsinfo import COSTS
cfg = Config()
openai.api_key = cfg.openai_api_key
print_total_cost = cfg.debug_mode
class ApiManager:
def __init__(self, debug=False):
self.total_prompt_tokens = 0
self.total_completion_tokens = 0
self.total_cost = 0
self.total_budget = 0
self.debug = debug
def reset(self):
self.total_prompt_tokens = 0
self.total_completion_tokens = 0
self.total_cost = 0
self.total_budget = 0.0
def create_chat_completion(
self,
messages: list, # type: ignore
model: str | None = None,
temperature: float = cfg.temperature,
max_tokens: int | None = None,
deployment_id=None,
) -> str:
"""
Create a chat completion and update the cost.
Args:
messages (list): The list of messages to send to the API.
model (str): The model to use for the API call.
temperature (float): The temperature to use for the API call.
max_tokens (int): The maximum number of tokens for the API call.
Returns:
str: The AI's response.
"""
if deployment_id is not None:
response = openai.ChatCompletion.create(
deployment_id=deployment_id,
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
)
else:
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
)
if self.debug:
logger.debug(f"Response: {response}")
prompt_tokens = response.usage.prompt_tokens
completion_tokens = response.usage.completion_tokens
self.update_cost(prompt_tokens, completion_tokens, model)
return response
def embedding_create(
self,
text_list: List[str],
model: str = "text-embedding-ada-002",
) -> List[float]:
"""
Create an embedding for the given input text using the specified model.
Args:
text_list (List[str]): Input text for which the embedding is to be created.
model (str, optional): The model to use for generating the embedding.
Returns:
List[float]: The generated embedding as a list of float values.
"""
if cfg.use_azure:
response = openai.Embedding.create(
input=text_list,
engine=cfg.get_azure_deployment_id_for_model(model),
)
else:
response = openai.Embedding.create(input=text_list, model=model)
self.update_cost(response.usage.prompt_tokens, 0, model)
return response["data"][0]["embedding"]
def update_cost(self, prompt_tokens, completion_tokens, model):
"""
Update the total cost, prompt tokens, and completion tokens.
Args:
prompt_tokens (int): The number of tokens used in the prompt.
completion_tokens (int): The number of tokens used in the completion.
model (str): The model used for the API call.
"""
self.total_prompt_tokens += prompt_tokens
self.total_completion_tokens += completion_tokens
self.total_cost += (
prompt_tokens * COSTS[model]["prompt"]
+ completion_tokens * COSTS[model]["completion"]
) / 1000
if print_total_cost:
print(f"Total running cost: ${self.total_cost:.3f}")
def set_total_budget(self, total_budget):
"""
Sets the total user-defined budget for API calls.
Args:
prompt_tokens (int): The number of tokens used in the prompt.
"""
self.total_budget = total_budget
def get_total_prompt_tokens(self):
"""
Get the total number of prompt tokens.
Returns:
int: The total number of prompt tokens.
"""
return self.total_prompt_tokens
def get_total_completion_tokens(self):
"""
Get the total number of completion tokens.
Returns:
int: The total number of completion tokens.
"""
return self.total_completion_tokens
def get_total_cost(self):
"""
Get the total cost of API calls.
Returns:
float: The total cost of API calls.
"""
return self.total_cost
def get_total_budget(self):
"""
Get the total user-defined budget for API calls.
Returns:
float: The total budget for API calls.
"""
return self.total_budget
api_manager = ApiManager(cfg.debug_mode)