Files
Auto-GPT/tests/unit/test_get_self_feedback.py
Erik Peterson 6b9e3b21d3 Add config as attribute to Agent, rename old config to ai_config (#4638)
* Add config as attribute to Agent, rename old config to ai_config

* Code review: Pass ai_config

---------

Co-authored-by: Nicholas Tindle <nick@ntindle.com>
Co-authored-by: merwanehamadi <merwanehamadi@gmail.com>
2023-06-10 14:47:26 -07:00

63 lines
2.3 KiB
Python

from datetime import datetime
from pytest_mock import MockerFixture
from autogpt.agent.agent import Agent
from autogpt.config import AIConfig
from autogpt.config.config import Config
from autogpt.llm.chat import create_chat_completion
from autogpt.log_cycle.log_cycle import LogCycleHandler
def test_get_self_feedback(config: Config, mocker: MockerFixture):
# Define a sample thoughts dictionary
thoughts = {
"reasoning": "Sample reasoning.",
"plan": "Sample plan.",
"thoughts": "Sample thoughts.",
}
# Define a fake response for the create_chat_completion function
fake_response = (
"The AI Agent has demonstrated a reasonable thought process, but there is room for improvement. "
"For example, the reasoning could be elaborated to better justify the plan, and the plan itself "
"could be more detailed to ensure its effectiveness. In addition, the AI Agent should focus more "
"on its core role and prioritize thoughts that align with that role."
)
# Mock the create_chat_completion function
mock_create_chat_completion = mocker.patch(
"autogpt.agent.agent.create_chat_completion", wraps=create_chat_completion
)
mock_create_chat_completion.return_value = fake_response
# Create a MagicMock object to replace the Agent instance
agent_mock = mocker.MagicMock(spec=Agent)
# Mock the config attribute of the Agent instance
agent_mock.config = config
agent_mock.ai_config = AIConfig()
# Mock the log_cycle_handler attribute of the Agent instance
agent_mock.log_cycle_handler = LogCycleHandler()
# Mock the create_nested_directory method of the LogCycleHandler instance
agent_mock.created_at = datetime.now().strftime("%Y%m%d_%H%M%S")
# Mock the cycle_count attribute of the Agent instance
agent_mock.cycle_count = 0
# Call the get_self_feedback method
feedback = Agent.get_self_feedback(
agent_mock,
thoughts,
"gpt-3.5-turbo",
)
# Check if the response is a non-empty string
assert isinstance(feedback, str) and len(feedback) > 0
# Check if certain keywords from input thoughts are present in the feedback response
for keyword in ["reasoning", "plan", "thoughts"]:
assert keyword in feedback