Files
Auto-GPT/autogpt/core/resource/model_providers/openai.py
Cyrus c8914ebb66 slips of the pen (bloopers) in autogpt/core part of the repo (#5045)
* fix omitted "()" in __str__(self) in core/ability/base.py

* put back async keyword in the base class

* Remove extra () in OpenAISettings class in
autogpt/core/resourece/model_providers/openai.py

---------

Co-authored-by: James Collins <collijk@uw.edu>
Co-authored-by: Nicholas Tindle <nick@ntindle.com>
2023-08-01 08:39:19 -07:00

374 lines
11 KiB
Python

import enum
import functools
import logging
import math
import time
from typing import Callable, ParamSpec, TypeVar
import openai
from openai.error import APIError, RateLimitError
from autogpt.core.configuration import (
Configurable,
SystemConfiguration,
UserConfigurable,
)
from autogpt.core.resource.model_providers.schema import (
Embedding,
EmbeddingModelProvider,
EmbeddingModelProviderModelInfo,
EmbeddingModelProviderModelResponse,
LanguageModelFunction,
LanguageModelMessage,
LanguageModelProvider,
LanguageModelProviderModelInfo,
LanguageModelProviderModelResponse,
ModelProviderBudget,
ModelProviderCredentials,
ModelProviderName,
ModelProviderService,
ModelProviderSettings,
ModelProviderUsage,
)
OpenAIEmbeddingParser = Callable[[Embedding], Embedding]
OpenAIChatParser = Callable[[str], dict]
class OpenAIModelName(str, enum.Enum):
ADA = "text-embedding-ada-002"
GPT3 = "gpt-3.5-turbo-0613"
GPT3_16K = "gpt-3.5-turbo-16k-0613"
GPT4 = "gpt-4-0613"
GPT4_32K = "gpt-4-32k-0613"
OPEN_AI_EMBEDDING_MODELS = {
OpenAIModelName.ADA: EmbeddingModelProviderModelInfo(
name=OpenAIModelName.ADA,
service=ModelProviderService.EMBEDDING,
provider_name=ModelProviderName.OPENAI,
prompt_token_cost=0.0004,
completion_token_cost=0.0,
max_tokens=8191,
embedding_dimensions=1536,
),
}
OPEN_AI_LANGUAGE_MODELS = {
OpenAIModelName.GPT3: LanguageModelProviderModelInfo(
name=OpenAIModelName.GPT3,
service=ModelProviderService.LANGUAGE,
provider_name=ModelProviderName.OPENAI,
prompt_token_cost=0.0015,
completion_token_cost=0.002,
max_tokens=4096,
),
OpenAIModelName.GPT3_16K: LanguageModelProviderModelInfo(
name=OpenAIModelName.GPT3,
service=ModelProviderService.LANGUAGE,
provider_name=ModelProviderName.OPENAI,
prompt_token_cost=0.003,
completion_token_cost=0.002,
max_tokens=16384,
),
OpenAIModelName.GPT4: LanguageModelProviderModelInfo(
name=OpenAIModelName.GPT4,
service=ModelProviderService.LANGUAGE,
provider_name=ModelProviderName.OPENAI,
prompt_token_cost=0.03,
completion_token_cost=0.06,
max_tokens=8192,
),
OpenAIModelName.GPT4_32K: LanguageModelProviderModelInfo(
name=OpenAIModelName.GPT4_32K,
service=ModelProviderService.LANGUAGE,
provider_name=ModelProviderName.OPENAI,
prompt_token_cost=0.06,
completion_token_cost=0.12,
max_tokens=32768,
),
}
OPEN_AI_MODELS = {
**OPEN_AI_LANGUAGE_MODELS,
**OPEN_AI_EMBEDDING_MODELS,
}
class OpenAIConfiguration(SystemConfiguration):
retries_per_request: int = UserConfigurable()
class OpenAIModelProviderBudget(ModelProviderBudget):
graceful_shutdown_threshold: float = UserConfigurable()
warning_threshold: float = UserConfigurable()
class OpenAISettings(ModelProviderSettings):
configuration: OpenAIConfiguration
credentials: ModelProviderCredentials
budget: OpenAIModelProviderBudget
class OpenAIProvider(
Configurable,
LanguageModelProvider,
EmbeddingModelProvider,
):
default_settings = OpenAISettings(
name="openai_provider",
description="Provides access to OpenAI's API.",
configuration=OpenAIConfiguration(
retries_per_request=10,
),
credentials=ModelProviderCredentials(),
budget=OpenAIModelProviderBudget(
total_budget=math.inf,
total_cost=0.0,
remaining_budget=math.inf,
usage=ModelProviderUsage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0,
),
graceful_shutdown_threshold=0.005,
warning_threshold=0.01,
),
)
def __init__(
self,
settings: OpenAISettings,
logger: logging.Logger,
):
self._configuration = settings.configuration
self._credentials = settings.credentials
self._budget = settings.budget
self._logger = logger
retry_handler = _OpenAIRetryHandler(
logger=self._logger,
num_retries=self._configuration.retries_per_request,
)
self._create_completion = retry_handler(_create_completion)
self._create_embedding = retry_handler(_create_embedding)
def get_token_limit(self, model_name: str) -> int:
"""Get the token limit for a given model."""
return OPEN_AI_MODELS[model_name].max_tokens
def get_remaining_budget(self) -> float:
"""Get the remaining budget."""
return self._budget.remaining_budget
async def create_language_completion(
self,
model_prompt: list[LanguageModelMessage],
functions: list[LanguageModelFunction],
model_name: OpenAIModelName,
completion_parser: Callable[[dict], dict],
**kwargs,
) -> LanguageModelProviderModelResponse:
"""Create a completion using the OpenAI API."""
completion_kwargs = self._get_completion_kwargs(model_name, functions, **kwargs)
response = await self._create_completion(
messages=model_prompt,
**completion_kwargs,
)
response_args = {
"model_info": OPEN_AI_LANGUAGE_MODELS[model_name],
"prompt_tokens_used": response.usage.prompt_tokens,
"completion_tokens_used": response.usage.completion_tokens,
}
parsed_response = completion_parser(
response.choices[0].message.to_dict_recursive()
)
response = LanguageModelProviderModelResponse(
content=parsed_response, **response_args
)
self._budget.update_usage_and_cost(response)
return response
async def create_embedding(
self,
text: str,
model_name: OpenAIModelName,
embedding_parser: Callable[[Embedding], Embedding],
**kwargs,
) -> EmbeddingModelProviderModelResponse:
"""Create an embedding using the OpenAI API."""
embedding_kwargs = self._get_embedding_kwargs(model_name, **kwargs)
response = await self._create_embedding(text=text, **embedding_kwargs)
response_args = {
"model_info": OPEN_AI_EMBEDDING_MODELS[model_name],
"prompt_tokens_used": response.usage.prompt_tokens,
"completion_tokens_used": response.usage.completion_tokens,
}
response = EmbeddingModelProviderModelResponse(
**response_args,
embedding=embedding_parser(response.embeddings[0]),
)
self._budget.update_usage_and_cost(response)
return response
def _get_completion_kwargs(
self,
model_name: OpenAIModelName,
functions: list[LanguageModelFunction],
**kwargs,
) -> dict:
"""Get kwargs for completion API call.
Args:
model: The model to use.
kwargs: Keyword arguments to override the default values.
Returns:
The kwargs for the chat API call.
"""
completion_kwargs = {
"model": model_name,
**kwargs,
**self._credentials.unmasked(),
}
if functions:
completion_kwargs["functions"] = functions
return completion_kwargs
def _get_embedding_kwargs(
self,
model_name: OpenAIModelName,
**kwargs,
) -> dict:
"""Get kwargs for embedding API call.
Args:
model: The model to use.
kwargs: Keyword arguments to override the default values.
Returns:
The kwargs for the embedding API call.
"""
embedding_kwargs = {
"model": model_name,
**kwargs,
**self._credentials.unmasked(),
}
return embedding_kwargs
def __repr__(self):
return "OpenAIProvider()"
async def _create_embedding(text: str, *_, **kwargs) -> openai.Embedding:
"""Embed text using the OpenAI API.
Args:
text str: The text to embed.
model_name str: The name of the model to use.
Returns:
str: The embedding.
"""
return await openai.Embedding.acreate(
input=[text],
**kwargs,
)
async def _create_completion(
messages: list[LanguageModelMessage], *_, **kwargs
) -> openai.Completion:
"""Create a chat completion using the OpenAI API.
Args:
messages: The prompt to use.
Returns:
The completion.
"""
messages = [message.dict() for message in messages]
if "functions" in kwargs:
kwargs["functions"] = [function.json_schema for function in kwargs["functions"]]
return await openai.ChatCompletion.acreate(
messages=messages,
**kwargs,
)
_T = TypeVar("_T")
_P = ParamSpec("_P")
class _OpenAIRetryHandler:
"""Retry Handler for OpenAI API call.
Args:
num_retries int: Number of retries. Defaults to 10.
backoff_base float: Base for exponential backoff. Defaults to 2.
warn_user bool: Whether to warn the user. Defaults to True.
"""
_retry_limit_msg = "Error: Reached rate limit, passing..."
_api_key_error_msg = (
"Please double check that you have setup a PAID OpenAI API Account. You can "
"read more here: https://docs.agpt.co/setup/#getting-an-api-key"
)
_backoff_msg = "Error: API Bad gateway. Waiting {backoff} seconds..."
def __init__(
self,
logger: logging.Logger,
num_retries: int = 10,
backoff_base: float = 2.0,
warn_user: bool = True,
):
self._logger = logger
self._num_retries = num_retries
self._backoff_base = backoff_base
self._warn_user = warn_user
def _log_rate_limit_error(self) -> None:
self._logger.debug(self._retry_limit_msg)
if self._warn_user:
self._logger.warning(self._api_key_error_msg)
self._warn_user = False
def _backoff(self, attempt: int) -> None:
backoff = self._backoff_base ** (attempt + 2)
self._logger.debug(self._backoff_msg.format(backoff=backoff))
time.sleep(backoff)
def __call__(self, func: Callable[_P, _T]) -> Callable[_P, _T]:
@functools.wraps(func)
async def _wrapped(*args: _P.args, **kwargs: _P.kwargs) -> _T:
num_attempts = self._num_retries + 1 # +1 for the first attempt
for attempt in range(1, num_attempts + 1):
try:
return await func(*args, **kwargs)
except RateLimitError:
if attempt == num_attempts:
raise
self._log_rate_limit_error()
except APIError as e:
if (e.http_status != 502) or (attempt == num_attempts):
raise
self._backoff(attempt)
return _wrapped