Files
Auto-GPT/autogpt/agents/planning_agent.py
Reinier van der Leer 4e761b49f3 Clean up logging
2023-08-22 07:29:56 +02:00

369 lines
14 KiB
Python

from __future__ import annotations
import logging
import re
from datetime import datetime
from typing import TYPE_CHECKING, Literal, Optional
if TYPE_CHECKING:
from autogpt.config import AIConfig, Config
from autogpt.llm.base import ChatModelResponse, ChatSequence
from autogpt.memory.vector import VectorMemory
from autogpt.models.command_registry import CommandRegistry
from autogpt.agents.utils.exceptions import AgentException, InvalidAgentResponseError
from autogpt.json_utils.utilities import extract_dict_from_response, validate_dict
from autogpt.llm.base import Message
from autogpt.llm.utils import count_string_tokens
from autogpt.logs.log_cycle import (
CURRENT_CONTEXT_FILE_NAME,
NEXT_ACTION_FILE_NAME,
USER_INPUT_FILE_NAME,
LogCycleHandler,
)
from autogpt.models.agent_actions import (
ActionErrorResult,
ActionHistory,
ActionInterruptedByHuman,
ActionResult,
ActionSuccessResult,
)
from autogpt.models.context_item import ContextItem
from autogpt.workspace import Workspace
from .agent import execute_command, extract_command
from .base import BaseAgent
from .utils.context import AgentContext
logger = logging.getLogger(__name__)
class PlanningAgent(BaseAgent):
"""Agent class for interacting with Auto-GPT."""
ThoughtProcessID = Literal["plan", "action", "evaluate"]
def __init__(
self,
ai_config: AIConfig,
command_registry: CommandRegistry,
memory: VectorMemory,
triggering_prompt: str,
config: Config,
cycle_budget: Optional[int] = None,
):
super().__init__(
ai_config=ai_config,
command_registry=command_registry,
config=config,
default_cycle_instruction=triggering_prompt,
cycle_budget=cycle_budget,
)
self.memory = memory
"""VectorMemoryProvider used to manage the agent's context (TODO)"""
self.workspace = Workspace(config.workspace_path, config.restrict_to_workspace)
"""Workspace that the agent has access to, e.g. for reading/writing files."""
self.created_at = datetime.now().strftime("%Y%m%d_%H%M%S")
"""Timestamp the agent was created; only used for structured debug logging."""
self.log_cycle_handler = LogCycleHandler()
"""LogCycleHandler for structured debug logging."""
self.action_history = ActionHistory()
self.context = AgentContext()
"""Dynamic segment of the prompt, to provide the LLM with relevant context"""
self.plan: list[str] = []
"""List of steps that the Agent plans to take"""
def construct_base_prompt(
self, thought_process_id: ThoughtProcessID, **kwargs
) -> ChatSequence:
prepend_messages = kwargs["prepend_messages"] = kwargs.get(
"prepend_messages", []
)
# Add the current plan to the prompt, if any
if self.plan:
plan_section = [
"## Plan",
"To complete your task, you have composed the following plan:",
]
plan_section += [f"{i}. {s}" for i, s in enumerate(self.plan, 1)]
# Add the actions so far to the prompt
if self.action_history:
plan_section += [
"\n### Progress",
"So far, you have executed the following actions based on the plan:",
]
for i, cycle in enumerate(self.action_history, 1):
if not (cycle.action and cycle.result):
logger.warn(f"Incomplete action in history: {cycle}")
continue
plan_section.append(
f"{i}. You executed the command `{cycle.action.format_call()}`, "
f"which gave the result `{cycle.result}`."
)
prepend_messages.append(Message("system", "\n".join(plan_section)))
if self.context:
context_section = [
"## Context",
"Below is information that may be relevant to your task. These take up "
"part of your working memory, which is limited, so when a context item is "
"no longer relevant for your plan, use the `close_context_item` command to "
"free up some memory."
"\n",
self.context.format_numbered(),
]
prepend_messages.append(Message("system", "\n".join(context_section)))
match thought_process_id:
case "plan":
# TODO: add planning instructions; details about what to pay attention to when planning
pass
case "action":
# TODO: need to insert the functions here again?
pass
case "evaluate":
# TODO: insert latest action (with reasoning) + result + evaluation instructions
pass
case _:
raise NotImplementedError(
f"Unknown thought process '{thought_process_id}'"
)
return super().construct_base_prompt(
thought_process_id=thought_process_id, **kwargs
)
def response_format_instruction(self, thought_process_id: ThoughtProcessID) -> str:
match thought_process_id:
case "plan":
# TODO: add planning instructions; details about what to pay attention to when planning
response_format = f"""```ts
interface Response {{
thoughts: {{
// Thoughts
text: string;
// A short logical explanation about how the action is part of the earlier composed plan
reasoning: string;
// Constructive self-criticism
criticism: string;
}};
// A plan to achieve the goals with the available resources and/or commands.
plan: Array<{{
// An actionable subtask
subtask: string;
// Criterium to determine whether the subtask has been completed
completed_if: string;
}}>;
}}
```"""
pass
case "action":
# TODO: need to insert the functions here again?
response_format = """```ts
interface Response {
thoughts: {
// Thoughts
text: string;
// A short logical explanation about how the action is part of the earlier composed plan
reasoning: string;
// Constructive self-criticism
criticism: string;
};
// The action to take, from the earlier specified list of commands
command: {
name: string;
args: Record<string, any>;
};
}
```"""
pass
case "evaluate":
# TODO: insert latest action (with reasoning) + result + evaluation instructions
response_format = f"""```ts
interface Response {{
thoughts: {{
// Thoughts
text: string;
reasoning: string;
// Constructive self-criticism
criticism: string;
}};
result_evaluation: {{
// A short logical explanation of why the given partial result does or does not complete the corresponding subtask
reasoning: string;
// Whether the current subtask has been completed
completed: boolean;
// An estimate of the progress (0.0 - 1.0) that has been made on the subtask with the actions that have been taken so far
progress: float;
}};
}}
```"""
pass
case _:
raise NotImplementedError(
f"Unknown thought process '{thought_process_id}'"
)
response_format = re.sub(
r"\n\s+",
"\n",
response_format,
)
return (
f"Respond strictly with JSON. The JSON should be compatible with "
"the TypeScript type `Response` from the following:\n"
f"{response_format}\n"
)
def on_before_think(self, *args, **kwargs) -> ChatSequence:
prompt = super().on_before_think(*args, **kwargs)
self.log_cycle_handler.log_count_within_cycle = 0
self.log_cycle_handler.log_cycle(
self.ai_config.ai_name,
self.created_at,
self.cycle_count,
self.action_history.cycles,
"action_history.json",
)
self.log_cycle_handler.log_cycle(
self.ai_config.ai_name,
self.created_at,
self.cycle_count,
prompt.raw(),
CURRENT_CONTEXT_FILE_NAME,
)
return prompt
def execute(
self,
command_name: str,
command_args: dict[str, str] = {},
user_input: str = "",
) -> ActionResult:
result: ActionResult
if command_name == "human_feedback":
result = ActionInterruptedByHuman(user_input)
self.log_cycle_handler.log_cycle(
self.ai_config.ai_name,
self.created_at,
self.cycle_count,
user_input,
USER_INPUT_FILE_NAME,
)
else:
for plugin in self.config.plugins:
if not plugin.can_handle_pre_command():
continue
command_name, arguments = plugin.pre_command(command_name, command_args)
try:
return_value = execute_command(
command_name=command_name,
arguments=command_args,
agent=self,
)
# Intercept ContextItem if one is returned by the command
if type(return_value) == tuple and isinstance(
return_value[1], ContextItem
):
self.context.add(return_value[1])
return_value = return_value[0]
result = ActionSuccessResult(return_value)
except AgentException as e:
result = ActionErrorResult(e.message, e)
result_tlength = count_string_tokens(str(result), self.llm.name)
memory_tlength = count_string_tokens(
str(self.history.summary_message()), self.llm.name
)
if result_tlength + memory_tlength > self.send_token_limit:
result = ActionErrorResult(
reason=f"Command {command_name} returned too much output. "
"Do not execute this command again with the same arguments."
)
for plugin in self.config.plugins:
if not plugin.can_handle_post_command():
continue
if result.status == "success":
result.results = plugin.post_command(command_name, result.results)
elif result.status == "error":
result.reason = plugin.post_command(command_name, result.reason)
# Check if there's a result from the command append it to the message
if result.status == "success":
self.history.add(
"system",
f"Command {command_name} returned: {result.results}",
"action_result",
)
elif result.status == "error":
message = f"Command {command_name} failed: {result.reason}"
if (
result.error
and isinstance(result.error, AgentException)
and result.error.hint
):
message = message.rstrip(".") + f". {result.error.hint}"
self.history.add("system", message, "action_result")
return result
def parse_and_process_response(
self,
llm_response: ChatModelResponse,
thought_process_id: ThoughtProcessID,
*args,
**kwargs,
) -> PlanningAgent.ThoughtProcessOutput:
if not llm_response.content:
raise InvalidAgentResponseError("Assistant response has no text content")
response_content = llm_response.content
for plugin in self.config.plugins:
if not plugin.can_handle_post_planning():
continue
response_content = plugin.post_planning(response_content)
assistant_reply_dict = extract_dict_from_response(response_content)
_, errors = validate_dict(assistant_reply_dict, self.config)
if errors:
raise InvalidAgentResponseError(
"Validation of response failed:\n "
+ ";\n ".join([str(e) for e in errors])
)
# Get command name and arguments
command_name, arguments = extract_command(
assistant_reply_dict, llm_response, self.config
)
response = command_name, arguments, assistant_reply_dict
self.log_cycle_handler.log_cycle(
self.ai_config.ai_name,
self.created_at,
self.cycle_count,
assistant_reply_dict,
NEXT_ACTION_FILE_NAME,
)
return response