Files
Auto-GPT/autogpt/agents/agent.py
Reinier van der Leer 4e761b49f3 Clean up logging
2023-08-22 07:29:56 +02:00

370 lines
13 KiB
Python

from __future__ import annotations
import json
import logging
import time
from datetime import datetime
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from autogpt.config import AIConfig, Config
from autogpt.llm.base import ChatModelResponse, ChatSequence
from autogpt.memory.vector import VectorMemory
from autogpt.models.command_registry import CommandRegistry
from autogpt.agents.utils.exceptions import (
AgentException,
CommandExecutionError,
InvalidAgentResponseError,
UnknownCommandError,
)
from autogpt.json_utils.utilities import extract_dict_from_response, validate_dict
from autogpt.llm.api_manager import ApiManager
from autogpt.llm.base import Message
from autogpt.llm.utils import count_string_tokens
from autogpt.logs.log_cycle import (
CURRENT_CONTEXT_FILE_NAME,
FULL_MESSAGE_HISTORY_FILE_NAME,
NEXT_ACTION_FILE_NAME,
USER_INPUT_FILE_NAME,
LogCycleHandler,
)
from autogpt.models.agent_actions import (
ActionErrorResult,
ActionInterruptedByHuman,
ActionResult,
ActionSuccessResult,
)
from autogpt.models.command import CommandOutput
from autogpt.models.context_item import ContextItem
from autogpt.workspace import Workspace
from .base import BaseAgent
logger = logging.getLogger(__name__)
class Agent(BaseAgent):
"""Agent class for interacting with Auto-GPT."""
def __init__(
self,
ai_config: AIConfig,
command_registry: CommandRegistry,
memory: VectorMemory,
triggering_prompt: str,
config: Config,
cycle_budget: Optional[int] = None,
):
super().__init__(
ai_config=ai_config,
command_registry=command_registry,
config=config,
default_cycle_instruction=triggering_prompt,
cycle_budget=cycle_budget,
)
self.memory = memory
"""VectorMemoryProvider used to manage the agent's context (TODO)"""
self.workspace = Workspace(config.workspace_path, config.restrict_to_workspace)
"""Workspace that the agent has access to, e.g. for reading/writing files."""
self.created_at = datetime.now().strftime("%Y%m%d_%H%M%S")
"""Timestamp the agent was created; only used for structured debug logging."""
self.log_cycle_handler = LogCycleHandler()
"""LogCycleHandler for structured debug logging."""
def construct_base_prompt(self, *args, **kwargs) -> ChatSequence:
if kwargs.get("prepend_messages") is None:
kwargs["prepend_messages"] = []
# Clock
kwargs["prepend_messages"].append(
Message("system", f"The current time and date is {time.strftime('%c')}"),
)
# Add budget information (if any) to prompt
api_manager = ApiManager()
if api_manager.get_total_budget() > 0.0:
remaining_budget = (
api_manager.get_total_budget() - api_manager.get_total_cost()
)
if remaining_budget < 0:
remaining_budget = 0
budget_msg = Message(
"system",
f"Your remaining API budget is ${remaining_budget:.3f}"
+ (
" BUDGET EXCEEDED! SHUT DOWN!\n\n"
if remaining_budget == 0
else " Budget very nearly exceeded! Shut down gracefully!\n\n"
if remaining_budget < 0.005
else " Budget nearly exceeded. Finish up.\n\n"
if remaining_budget < 0.01
else ""
),
)
logger.debug(budget_msg)
if kwargs.get("append_messages") is None:
kwargs["append_messages"] = []
kwargs["append_messages"].append(budget_msg)
# Include message history in base prompt
kwargs["with_message_history"] = True
return super().construct_base_prompt(*args, **kwargs)
def on_before_think(self, *args, **kwargs) -> ChatSequence:
prompt = super().on_before_think(*args, **kwargs)
self.log_cycle_handler.log_count_within_cycle = 0
self.log_cycle_handler.log_cycle(
self.ai_config.ai_name,
self.created_at,
self.cycle_count,
self.history.raw(),
FULL_MESSAGE_HISTORY_FILE_NAME,
)
self.log_cycle_handler.log_cycle(
self.ai_config.ai_name,
self.created_at,
self.cycle_count,
prompt.raw(),
CURRENT_CONTEXT_FILE_NAME,
)
return prompt
def execute(
self,
command_name: str,
command_args: dict[str, str] = {},
user_input: str = "",
) -> ActionResult:
result: ActionResult
if command_name == "human_feedback":
result = ActionInterruptedByHuman(user_input)
self.history.add(
"user",
"I interrupted the execution of the command you proposed "
f"to give you some feedback: {user_input}",
)
self.log_cycle_handler.log_cycle(
self.ai_config.ai_name,
self.created_at,
self.cycle_count,
user_input,
USER_INPUT_FILE_NAME,
)
else:
for plugin in self.config.plugins:
if not plugin.can_handle_pre_command():
continue
command_name, arguments = plugin.pre_command(command_name, command_args)
try:
return_value = execute_command(
command_name=command_name,
arguments=command_args,
agent=self,
)
# Intercept ContextItem if one is returned by the command
if type(return_value) == tuple and isinstance(
return_value[1], ContextItem
):
context_item = return_value[1]
# return_value = return_value[0]
logger.debug(
f"Command {command_name} returned a ContextItem: {context_item}"
)
# self.context.add(context_item)
# HACK: use content of ContextItem as return value, for legacy support
return_value = context_item.content
result = ActionSuccessResult(return_value)
except AgentException as e:
result = ActionErrorResult(e.message, e)
logger.debug(f"Command result: {result}")
result_tlength = count_string_tokens(str(result), self.llm.name)
memory_tlength = count_string_tokens(
str(self.history.summary_message()), self.llm.name
)
if result_tlength + memory_tlength > self.send_token_limit:
result = ActionErrorResult(
reason=f"Command {command_name} returned too much output. "
"Do not execute this command again with the same arguments."
)
for plugin in self.config.plugins:
if not plugin.can_handle_post_command():
continue
if result.status == "success":
result.results = plugin.post_command(command_name, result.results)
elif result.status == "error":
result.reason = plugin.post_command(command_name, result.reason)
# Check if there's a result from the command append it to the message
if result.status == "success":
self.history.add(
"system",
f"Command {command_name} returned: {result.results}",
"action_result",
)
elif result.status == "error":
message = f"Command {command_name} failed: {result.reason}"
# Append hint to the error message if the exception has a hint
if (
result.error
and isinstance(result.error, AgentException)
and result.error.hint
):
message = message.rstrip(".") + f". {result.error.hint}"
self.history.add("system", message, "action_result")
return result
def parse_and_process_response(
self, llm_response: ChatModelResponse, *args, **kwargs
) -> Agent.ThoughtProcessOutput:
if not llm_response.content:
raise InvalidAgentResponseError("Assistant response has no text content")
response_content = llm_response.content
for plugin in self.config.plugins:
if not plugin.can_handle_post_planning():
continue
response_content = plugin.post_planning(response_content)
assistant_reply_dict = extract_dict_from_response(response_content)
_, errors = validate_dict(assistant_reply_dict, self.config)
if errors:
raise InvalidAgentResponseError(
"Validation of response failed:\n "
+ ";\n ".join([str(e) for e in errors])
)
# Get command name and arguments
command_name, arguments = extract_command(
assistant_reply_dict, llm_response, self.config
)
response = command_name, arguments, assistant_reply_dict
self.log_cycle_handler.log_cycle(
self.ai_config.ai_name,
self.created_at,
self.cycle_count,
assistant_reply_dict,
NEXT_ACTION_FILE_NAME,
)
return response
def extract_command(
assistant_reply_json: dict, assistant_reply: ChatModelResponse, config: Config
) -> tuple[str, dict[str, str]]:
"""Parse the response and return the command name and arguments
Args:
assistant_reply_json (dict): The response object from the AI
assistant_reply (ChatModelResponse): The model response from the AI
config (Config): The config object
Returns:
tuple: The command name and arguments
Raises:
json.decoder.JSONDecodeError: If the response is not valid JSON
Exception: If any other error occurs
"""
if config.openai_functions:
if assistant_reply.function_call is None:
raise InvalidAgentResponseError("No 'function_call' in assistant reply")
assistant_reply_json["command"] = {
"name": assistant_reply.function_call.name,
"args": json.loads(assistant_reply.function_call.arguments),
}
try:
if not isinstance(assistant_reply_json, dict):
raise InvalidAgentResponseError(
f"The previous message sent was not a dictionary {assistant_reply_json}"
)
if "command" not in assistant_reply_json:
raise InvalidAgentResponseError("Missing 'command' object in JSON")
command = assistant_reply_json["command"]
if not isinstance(command, dict):
raise InvalidAgentResponseError("'command' object is not a dictionary")
if "name" not in command:
raise InvalidAgentResponseError("Missing 'name' field in 'command' object")
command_name = command["name"]
# Use an empty dictionary if 'args' field is not present in 'command' object
arguments = command.get("args", {})
return command_name, arguments
except json.decoder.JSONDecodeError:
raise InvalidAgentResponseError("Invalid JSON")
except Exception as e:
raise InvalidAgentResponseError(str(e))
def execute_command(
command_name: str,
arguments: dict[str, str],
agent: Agent,
) -> CommandOutput:
"""Execute the command and return the result
Args:
command_name (str): The name of the command to execute
arguments (dict): The arguments for the command
agent (Agent): The agent that is executing the command
Returns:
str: The result of the command
"""
# Execute a native command with the same name or alias, if it exists
if command := agent.command_registry.get_command(command_name):
try:
return command(**arguments, agent=agent)
except AgentException:
raise
except Exception as e:
raise CommandExecutionError(str(e))
# Handle non-native commands (e.g. from plugins)
for command in agent.ai_config.prompt_generator.commands:
if (
command_name == command.label.lower()
or command_name == command.name.lower()
):
try:
return command.function(**arguments)
except AgentException:
raise
except Exception as e:
raise CommandExecutionError(str(e))
raise UnknownCommandError(
f"Cannot execute command '{command_name}': unknown command."
)