Files
Auto-GPT/AutonomousAI/browse.py
Torantulino fc6c7bd8c4 Tides up codebase.
Extracts python functions to relevant files.
2023-03-28 23:25:42 +01:00

89 lines
2.7 KiB
Python

from googlesearch import search
import requests
from bs4 import BeautifulSoup
from readability import Document#
import openai
def scrape_text(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
def scrape_main_content(url):
response = requests.get(url)
# Try using Readability
doc = Document(response.text)
content = doc.summary()
soup = BeautifulSoup(content, "html.parser")
text = soup.get_text('\n', strip=True)
# Check if Readability provided a satisfactory result (e.g., a minimum length)
# min_length = 50
# if len(text) < min_length:
# # Fallback to the custom function
# text = scrape_main_content_custom(response.text)
return text
def split_text(text, max_length=8192):
paragraphs = text.split("\n")
current_length = 0
current_chunk = []
for paragraph in paragraphs:
if current_length + len(paragraph) + 1 <= max_length:
current_chunk.append(paragraph)
current_length += len(paragraph) + 1
else:
yield "\n".join(current_chunk)
current_chunk = [paragraph]
current_length = len(paragraph) + 1
if current_chunk:
yield "\n".join(current_chunk)
def summarize_text(text):
if text == "":
return "Error: No text to summarize"
print("Text length: " + str(len(text)) + " characters")
summaries = []
chunks = list(split_text(text))
for i, chunk in enumerate(chunks):
print("Summarizing chunk " + str(i) + " / " + str(len(chunks)))
messages = [{"role": "user", "content": "Please summarize the following text, focusing on extracting concise knowledge: " + chunk},]
response= openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=300,
)
summary = response.choices[0].message.content
summaries.append(summary)
print("Summarized " + str(len(chunks)) + " chunks.")
combined_summary = "\n".join(summaries)
# Summarize the combined summary
messages = [{"role": "user", "content": "Please summarize the following text, focusing on extracting concise knowledge: " + combined_summary},]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=300,
)
final_summary = response.choices[0].message.content
return final_summary