Files
Auto-GPT/autogpt/memory_management/summary_memory.py
2023-05-12 22:18:15 +03:00

144 lines
5.0 KiB
Python

import copy
import json
from typing import Dict, List, Tuple
from autogpt.agent import Agent
from autogpt.config import Config
from autogpt.llm.llm_utils import create_chat_completion
from autogpt.log_cycle.log_cycle import PROMPT_SUMMARY_FILE_NAME, SUMMARY_FILE_NAME
from autogpt.logs import logger
cfg = Config()
def get_newly_trimmed_messages(
full_message_history: List[Dict[str, str]],
current_context: List[Dict[str, str]],
last_memory_index: int,
) -> Tuple[List[Dict[str, str]], int]:
"""
This function returns a list of dictionaries contained in full_message_history
with an index higher than prev_index that are absent from current_context.
Args:
full_message_history (list): A list of dictionaries representing the full message history.
current_context (list): A list of dictionaries representing the current context.
last_memory_index (int): An integer representing the previous index.
Returns:
list: A list of dictionaries that are in full_message_history with an index higher than last_memory_index and absent from current_context.
int: The new index value for use in the next loop.
"""
# Select messages in full_message_history with an index higher than last_memory_index
new_messages = [
msg for i, msg in enumerate(full_message_history) if i > last_memory_index
]
# Remove messages that are already present in current_context
new_messages_not_in_context = [
msg for msg in new_messages if msg not in current_context
]
# Find the index of the last message processed
new_index = last_memory_index
if new_messages_not_in_context:
last_message = new_messages_not_in_context[-1]
new_index = full_message_history.index(last_message)
return new_messages_not_in_context, new_index
def update_running_summary(
agent: Agent, current_memory: str, new_events: List[Dict[str, str]]
) -> str:
"""
This function takes a list of dictionaries representing new events and combines them with the current summary,
focusing on key and potentially important information to remember. The updated summary is returned in a message
formatted in the 1st person past tense.
Args:
new_events (List[Dict]): A list of dictionaries containing the latest events to be added to the summary.
Returns:
str: A message containing the updated summary of actions, formatted in the 1st person past tense.
Example:
new_events = [{"event": "entered the kitchen."}, {"event": "found a scrawled note with the number 7"}]
update_running_summary(new_events)
# Returns: "This reminds you of these events from your past: \nI entered the kitchen and found a scrawled note saying 7."
"""
# Create a copy of the new_events list to prevent modifying the original list
new_events = copy.deepcopy(new_events)
# Replace "assistant" with "you". This produces much better first person past tense results.
for event in new_events:
if event["role"].lower() == "assistant":
event["role"] = "you"
# Remove "thoughts" dictionary from "content"
try:
content_dict = json.loads(event["content"])
if "thoughts" in content_dict:
del content_dict["thoughts"]
event["content"] = json.dumps(content_dict)
except json.decoder.JSONDecodeError:
if cfg.debug_mode:
logger.error(f"Error: Invalid JSON: {event['content']}\n")
elif event["role"].lower() == "system":
event["role"] = "your computer"
# Delete all user messages
elif event["role"] == "user":
new_events.remove(event)
# This can happen at any point during execution, not just the beginning
if len(new_events) == 0:
new_events = "Nothing new happened."
prompt = f'''Your task is to create a concise running summary of actions and information results in the provided text, focusing on key and potentially important information to remember.
You will receive the current summary and the your latest actions. Combine them, adding relevant key information from the latest development in 1st person past tense and keeping the summary concise.
Summary So Far:
"""
{current_memory}
"""
Latest Development:
"""
{new_events}
"""
'''
messages = [
{
"role": "user",
"content": prompt,
}
]
agent.log_cycle_handler.log_cycle(
agent.config.ai_name,
agent.created_at,
agent.cycle_count,
messages,
PROMPT_SUMMARY_FILE_NAME,
)
current_memory = create_chat_completion(messages, cfg.fast_llm_model)
agent.log_cycle_handler.log_cycle(
agent.config.ai_name,
agent.created_at,
agent.cycle_count,
current_memory,
SUMMARY_FILE_NAME,
)
message_to_return = {
"role": "system",
"content": f"This reminds you of these events from your past: \n{current_memory}",
}
return message_to_return