Files
Auto-GPT/benchmark/agbenchmark/utils/challenge.py
merwanehamadi 295702867a Ability to run by categories (#5229)
* Ability to run by categories

Signed-off-by: Merwane Hamadi <merwanehamadi@gmail.com>

* always use Path.cwd()

Signed-off-by: Merwane Hamadi <merwanehamadi@gmail.com>

---------

Signed-off-by: Merwane Hamadi <merwanehamadi@gmail.com>
2023-09-15 20:04:12 -07:00

232 lines
8.4 KiB
Python

import glob
import math
import os
import subprocess
import sys
from abc import ABC
from pathlib import Path
from typing import Any, Dict, List
import openai
import pytest
from agbenchmark.__main__ import OPTIONAL_CATEGORIES, TEMP_FOLDER_ABS_PATH
from agbenchmark.agent_api_interface import run_api_agent
from agbenchmark.utils.data_types import ChallengeData, Ground
from agbenchmark.utils.prompts import (
END_PROMPT,
FEW_SHOT_EXAMPLES,
PROMPT_MAP,
SCORING_MAP,
)
from agbenchmark.utils.utils import agent_eligibible_for_optional_categories
class Challenge(ABC):
"""The parent class to all specific challenges classes.
Defines helper methods for running a challenge"""
_data_cache: Dict[str, ChallengeData] = {}
CHALLENGE_LOCATION: str = ""
scores: dict[str, Any] = {} # this is for suites
@property
def data(self) -> ChallengeData:
if self.CHALLENGE_LOCATION not in self._data_cache:
self._data_cache[self.CHALLENGE_LOCATION] = ChallengeData.deserialize(
self.CHALLENGE_LOCATION
)
return self._data_cache[self.CHALLENGE_LOCATION]
@property
def task(self) -> str:
return self.data.task
@property
def dependencies(self) -> list:
return self.data.dependencies
async def setup_challenge(self, config: Dict[str, Any], cutoff: int) -> None:
from agbenchmark.agent_interface import copy_artifacts_into_temp_folder
artifact_paths = [
self.ARTIFACTS_LOCATION,
str(Path(self.CHALLENGE_LOCATION).parent),
]
if not self.task:
return
print(
f"\033[1;35m============Starting {self.data.name} challenge============\033[0m"
)
print(f"\033[1;30mTask: {self.task}\033[0m")
await run_api_agent(self.data, config, self.ARTIFACTS_LOCATION, cutoff)
# hidden files are added after the agent runs. Hidden files can be python test files.
# We copy them in the temporary folder to make it easy to import the code produced by the agent
for path in artifact_paths:
copy_artifacts_into_temp_folder(TEMP_FOLDER_ABS_PATH, "custom_python", path)
def test_method(self, config: Dict[str, Any]) -> None:
raise NotImplementedError
def get_artifacts_out(
self, workspace: str | dict[str, str], ground: Ground
) -> List[str]:
if isinstance(workspace, dict):
workspace = workspace["output"]
script_dir = workspace
files_contents = []
for file_pattern in ground.files:
# Check if it is a file extension
if file_pattern.startswith("."):
# Find all files with the given extension in the workspace
matching_files = glob.glob(os.path.join(script_dir, "*" + file_pattern))
else:
# Otherwise, it is a specific file
matching_files = [os.path.join(script_dir, file_pattern)]
for file_path in matching_files:
if ground.eval.type == "python":
result = subprocess.run(
[sys.executable, file_path],
cwd=os.path.abspath(workspace),
capture_output=True,
text=True,
)
if "error" in result.stderr or result.returncode != 0:
print(result.stderr)
assert False, result.stderr
files_contents.append(f"Output: {result.stdout}\n")
else:
with open(file_path, "r") as f:
files_contents.append(f.read())
else:
if ground.eval.type == "pytest":
result = subprocess.run(
[sys.executable, "-m", "pytest"],
cwd=TEMP_FOLDER_ABS_PATH,
capture_output=True,
text=True,
)
if "error" in result.stderr or result.returncode != 0:
print(result.stderr)
assert False, result.stderr
files_contents.append(f"Output: {result.stdout}\n")
return files_contents
def scoring(self, config: Dict[str, Any], content: str, ground: Ground) -> float:
print("\033[1;34mScoring content:\033[0m", content)
if ground.should_contain:
for should_contain_word in ground.should_contain:
print_content = (
f"\033[1;34mWord that should exist\033[0m - {should_contain_word}:"
)
if should_contain_word not in content:
print(print_content, "False")
return 0.0
else:
print(print_content, "True")
if ground.should_not_contain:
for should_not_contain_word in ground.should_not_contain:
print_content = f"\033[1;34mWord that should not exist\033[0m - {should_not_contain_word}:"
if should_not_contain_word in content:
print(print_content, "False")
return 0.0
else:
print(print_content, "True")
return 1.0
def llm_eval(self, config: Dict[str, Any], content: str, ground: Ground) -> float:
openai.api_key = os.getenv("OPENAI_API_KEY")
if os.getenv("IS_MOCK"):
return 1.0
# the validation for this is done in the Eval BaseModel
scoring = SCORING_MAP[ground.eval.scoring] # type: ignore
prompt = PROMPT_MAP[ground.eval.template].format(task=self.data.task, scoring=scoring, answer=ground.answer, response=content) # type: ignore
if ground.eval.examples:
prompt += FEW_SHOT_EXAMPLES.format(examples=ground.eval.examples)
prompt += END_PROMPT
answer = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": prompt},
],
)
return float(answer["choices"][0]["message"]["content"]) # type: ignore
def get_scores(self, config: Dict[str, Any]) -> dict[str, Any]:
scores = []
scores_dict: Any = {}
percentage = None
answers = {}
try:
if self.data.task == "" and os.getenv("IS_MOCK"):
scores = [1.0]
answers = {"mock": "This is a mock answer"}
elif isinstance(self.data.ground, Ground):
files_contents = self.get_artifacts_out(
TEMP_FOLDER_ABS_PATH, self.data.ground
)
answers = {"answer": files_contents}
for file_content in files_contents:
score = self.scoring(config, file_content, self.data.ground)
print("\033[1;32mYour score is:\033[0m", score)
scores.append(score)
if self.data.ground.eval.type == "llm":
llm_eval = self.llm_eval(
config, "\n".join(files_contents), self.data.ground
)
if self.data.ground.eval.scoring == "percentage":
scores.append(math.ceil(llm_eval / 100))
elif self.data.ground.eval.scoring == "scale":
scores.append(math.ceil(llm_eval / 10))
print("\033[1;32mYour score is:\033[0m", llm_eval)
scores.append(llm_eval)
except Exception as e:
print("Error getting scores", e)
scores_data = {
"values": scores,
"scores_obj": scores_dict,
"percentage": percentage,
"answers": answers,
}
self.scores[self.__class__.__name__] = scores_data
return scores_data
def get_dummy_scores(self, test_name: str, scores: dict[str, Any]) -> int | None:
return 1 # remove this once this works
if 1 in scores.get("scores_obj", {}).get(test_name, []):
return 1
return None
def skip_optional_categories(self, config: Dict[str, Any]) -> None:
challenge_category = self.data.category
categories = [
category
for category in OPTIONAL_CATEGORIES
if category in challenge_category
]
if not agent_eligibible_for_optional_categories(
categories, config.get("category", [])
):
pytest.skip("Agent is not eligible for this category")