Files
Auto-GPT/tests/test_llm_utils.py
James Collins 2619740daa Extract OpenAI API retry handler and unify ADA embeddings calls. (#3191)
* Extract retry logic, unify embedding functions

* Add some docstrings

* Remove embedding creation from API manager

* Add test suite for retry handler

* Make api manager fixture

* Fix typing

* Streamline tests
2023-04-25 11:12:24 -07:00

130 lines
3.6 KiB
Python

import pytest
from openai.error import APIError, RateLimitError
from autogpt.llm_utils import get_ada_embedding, retry_openai_api
from autogpt.modelsinfo import COSTS
@pytest.fixture(params=[RateLimitError, APIError])
def error(request):
if request.param == APIError:
return request.param("Error", http_status=502)
else:
return request.param("Error")
@pytest.fixture
def mock_create_embedding(mocker):
mock_response = mocker.MagicMock()
mock_response.usage.prompt_tokens = 5
mock_response.__getitem__.side_effect = lambda key: [{"embedding": [0.1, 0.2, 0.3]}]
return mocker.patch(
"autogpt.llm_utils.create_embedding", return_value=mock_response
)
def error_factory(error_instance, error_count, retry_count, warn_user=True):
class RaisesError:
def __init__(self):
self.count = 0
@retry_openai_api(
num_retries=retry_count, backoff_base=0.001, warn_user=warn_user
)
def __call__(self):
self.count += 1
if self.count <= error_count:
raise error_instance
return self.count
return RaisesError()
def test_retry_open_api_no_error(capsys):
@retry_openai_api()
def f():
return 1
result = f()
assert result == 1
output = capsys.readouterr()
assert output.out == ""
assert output.err == ""
@pytest.mark.parametrize(
"error_count, retry_count, failure",
[(2, 10, False), (2, 2, False), (10, 2, True), (3, 2, True), (1, 0, True)],
ids=["passing", "passing_edge", "failing", "failing_edge", "failing_no_retries"],
)
def test_retry_open_api_passing(capsys, error, error_count, retry_count, failure):
call_count = min(error_count, retry_count) + 1
raises = error_factory(error, error_count, retry_count)
if failure:
with pytest.raises(type(error)):
raises()
else:
result = raises()
assert result == call_count
assert raises.count == call_count
output = capsys.readouterr()
if error_count and retry_count:
if type(error) == RateLimitError:
assert "Reached rate limit, passing..." in output.out
assert "Please double check" in output.out
if type(error) == APIError:
assert "API Bad gateway" in output.out
else:
assert output.out == ""
def test_retry_open_api_rate_limit_no_warn(capsys):
error_count = 2
retry_count = 10
raises = error_factory(RateLimitError, error_count, retry_count, warn_user=False)
result = raises()
call_count = min(error_count, retry_count) + 1
assert result == call_count
assert raises.count == call_count
output = capsys.readouterr()
assert "Reached rate limit, passing..." in output.out
assert "Please double check" not in output.out
def test_retry_openapi_other_api_error(capsys):
error_count = 2
retry_count = 10
raises = error_factory(APIError("Error", http_status=500), error_count, retry_count)
with pytest.raises(APIError):
raises()
call_count = 1
assert raises.count == call_count
output = capsys.readouterr()
assert output.out == ""
def test_get_ada_embedding(mock_create_embedding, api_manager):
model = "text-embedding-ada-002"
embedding = get_ada_embedding("test")
mock_create_embedding.assert_called_once_with(
"test", model="text-embedding-ada-002"
)
assert embedding == [0.1, 0.2, 0.3]
cost = COSTS[model]["prompt"]
assert api_manager.get_total_prompt_tokens() == 5
assert api_manager.get_total_completion_tokens() == 0
assert api_manager.get_total_cost() == (5 * cost) / 1000