from __future__ import annotations import copy import json from dataclasses import dataclass from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from autogpt.agent import Agent from autogpt.config import Config from autogpt.json_utils.utilities import extract_json_from_response from autogpt.llm.base import ChatSequence, Message from autogpt.llm.providers.openai import OPEN_AI_CHAT_MODELS from autogpt.llm.utils import ( count_message_tokens, count_string_tokens, create_chat_completion, ) from autogpt.logs import PROMPT_SUMMARY_FILE_NAME, SUMMARY_FILE_NAME, logger @dataclass class MessageHistory(ChatSequence): max_summary_tlength: int = 500 agent: Optional[Agent] = None summary: str = "I was created" last_trimmed_index: int = 0 SUMMARIZATION_PROMPT = '''Your task is to create a concise running summary of actions and information results in the provided text, focusing on key and potentially important information to remember. You will receive the current summary and your latest actions. Combine them, adding relevant key information from the latest development in 1st person past tense and keeping the summary concise. Summary So Far: """ {summary} """ Latest Development: """ {new_events} """ ''' def trim_messages( self, current_message_chain: list[Message], config: Config ) -> tuple[Message, list[Message]]: """ Returns a list of trimmed messages: messages which are in the message history but not in current_message_chain. Args: current_message_chain (list[Message]): The messages currently in the context. config (Config): The config to use. Returns: Message: A message with the new running summary after adding the trimmed messages. list[Message]: A list of messages that are in full_message_history with an index higher than last_trimmed_index and absent from current_message_chain. """ # Select messages in full_message_history with an index higher than last_trimmed_index new_messages = [ msg for i, msg in enumerate(self) if i > self.last_trimmed_index ] # Remove messages that are already present in current_message_chain new_messages_not_in_chain = [ msg for msg in new_messages if msg not in current_message_chain ] if not new_messages_not_in_chain: return self.summary_message(), [] new_summary_message = self.update_running_summary( new_events=new_messages_not_in_chain, config=config ) # Find the index of the last message processed last_message = new_messages_not_in_chain[-1] self.last_trimmed_index = self.messages.index(last_message) return new_summary_message, new_messages_not_in_chain def per_cycle(self, messages: list[Message] | None = None): """ Yields: Message: a message containing user input Message: a message from the AI containing a proposed action Message: the message containing the result of the AI's proposed action """ messages = messages or self.messages for i in range(0, len(messages) - 1): ai_message = messages[i] if ai_message.type != "ai_response": continue user_message = ( messages[i - 1] if i > 0 and messages[i - 1].role == "user" else None ) result_message = messages[i + 1] try: assert ( extract_json_from_response(ai_message.content) != {} ), "AI response is not a valid JSON object" assert result_message.type == "action_result" yield user_message, ai_message, result_message except AssertionError as err: logger.debug( f"Invalid item in message history: {err}; Messages: {messages[i-1:i+2]}" ) def summary_message(self) -> Message: return Message( "system", f"This reminds you of these events from your past: \n{self.summary}", ) def update_running_summary( self, new_events: list[Message], config: Config, max_summary_length: Optional[int] = None, ) -> Message: """ This function takes a list of Message objects and updates the running summary to include the events they describe. The updated summary is returned in a Message formatted in the 1st person past tense. Args: new_events: A list of Messages containing the latest events to be added to the summary. Returns: Message: a Message containing the updated running summary. Example: ```py new_events = [{"event": "entered the kitchen."}, {"event": "found a scrawled note with the number 7"}] update_running_summary(new_events) # Returns: "This reminds you of these events from your past: \nI entered the kitchen and found a scrawled note saying 7." ``` """ if not new_events: return self.summary_message() if not max_summary_length: max_summary_length = self.max_summary_tlength # Create a copy of the new_events list to prevent modifying the original list new_events = copy.deepcopy(new_events) # Replace "assistant" with "you". This produces much better first person past tense results. for event in new_events: if event.role.lower() == "assistant": event.role = "you" # Remove "thoughts" dictionary from "content" try: content_dict = extract_json_from_response(event.content) if "thoughts" in content_dict: del content_dict["thoughts"] event.content = json.dumps(content_dict) except json.JSONDecodeError as e: logger.error(f"Error: Invalid JSON: {e}") if config.debug_mode: logger.error(f"{event.content}") elif event.role.lower() == "system": event.role = "your computer" # Delete all user messages elif event.role == "user": new_events.remove(event) summ_model = OPEN_AI_CHAT_MODELS[config.fast_llm] # Determine token lengths for use in batching prompt_template_length = len( MessageHistory.SUMMARIZATION_PROMPT.format(summary="", new_events="") ) max_input_tokens = summ_model.max_tokens - max_summary_length summary_tlength = count_string_tokens(self.summary, summ_model.name) batch = [] batch_tlength = 0 # TODO: Put a cap on length of total new events and drop some previous events to # save API cost. Need to think thru more how to do it without losing the context. for event in new_events: event_tlength = count_message_tokens(event, summ_model.name) if ( batch_tlength + event_tlength > max_input_tokens - prompt_template_length - summary_tlength ): # The batch is full. Summarize it and start a new one. self.summarize_batch(batch, config, max_summary_length) summary_tlength = count_string_tokens(self.summary, summ_model.name) batch = [event] batch_tlength = event_tlength else: batch.append(event) batch_tlength += event_tlength if batch: # There's an unprocessed batch. Summarize it. self.summarize_batch(batch, config, max_summary_length) return self.summary_message() def summarize_batch( self, new_events_batch: list[Message], config: Config, max_output_length: int ): prompt = MessageHistory.SUMMARIZATION_PROMPT.format( summary=self.summary, new_events=new_events_batch ) prompt = ChatSequence.for_model(config.fast_llm, [Message("user", prompt)]) if self.agent: self.agent.log_cycle_handler.log_cycle( self.agent.ai_config.ai_name, self.agent.created_at, self.agent.cycle_count, prompt.raw(), PROMPT_SUMMARY_FILE_NAME, ) self.summary = create_chat_completion( prompt, config, max_tokens=max_output_length ).content if self.agent: self.agent.log_cycle_handler.log_cycle( self.agent.ai_config.ai_name, self.agent.created_at, self.agent.cycle_count, self.summary, SUMMARY_FILE_NAME, )