from __future__ import annotations from dataclasses import asdict from typing import List, Literal, Optional from colorama import Fore from autogpt.config import Config from autogpt.logs import logger from ..api_manager import ApiManager from ..base import ChatModelResponse, ChatSequence, Message from ..providers import openai as iopenai from ..providers.openai import ( OPEN_AI_CHAT_MODELS, OpenAIFunctionCall, OpenAIFunctionSpec, ) from .token_counter import * def call_ai_function( function: str, args: list, description: str, model: Optional[str] = None, config: Optional[Config] = None, ) -> str: """Call an AI function This is a magic function that can do anything with no-code. See https://github.com/Torantulino/AI-Functions for more info. Args: function (str): The function to call args (list): The arguments to pass to the function description (str): The description of the function model (str, optional): The model to use. Defaults to None. Returns: str: The response from the function """ if model is None: model = config.smart_llm_model # For each arg, if any are None, convert to "None": args = [str(arg) if arg is not None else "None" for arg in args] # parse args to comma separated string arg_str: str = ", ".join(args) prompt = ChatSequence.for_model( model, [ Message( "system", f"You are now the following python function: ```# {description}" f"\n{function}```\n\nOnly respond with your `return` value.", ), Message("user", arg_str), ], ) return create_chat_completion(prompt=prompt, temperature=0, config=config).content def create_text_completion( prompt: str, config: Config, model: Optional[str], temperature: Optional[float], max_output_tokens: Optional[int], ) -> str: if model is None: model = config.fast_llm_model if temperature is None: temperature = config.temperature if config.use_azure: kwargs = {"deployment_id": config.get_azure_deployment_id_for_model(model)} else: kwargs = {"model": model} response = iopenai.create_text_completion( prompt=prompt, **kwargs, temperature=temperature, max_tokens=max_output_tokens, api_key=config.openai_api_key, ) logger.debug(f"Response: {response}") return response.choices[0].text # Overly simple abstraction until we create something better def create_chat_completion( prompt: ChatSequence, config: Config, functions: Optional[List[OpenAIFunctionSpec]] = None, model: Optional[str] = None, temperature: Optional[float] = None, max_tokens: Optional[int] = None, ) -> ChatModelResponse: """Create a chat completion using the OpenAI API Args: messages (List[Message]): The messages to send to the chat completion model (str, optional): The model to use. Defaults to None. temperature (float, optional): The temperature to use. Defaults to 0.9. max_tokens (int, optional): The max tokens to use. Defaults to None. Returns: str: The response from the chat completion """ if model is None: model = prompt.model.name if temperature is None: temperature = config.temperature logger.debug( f"{Fore.GREEN}Creating chat completion with model {model}, temperature {temperature}, max_tokens {max_tokens}{Fore.RESET}" ) chat_completion_kwargs = { "model": model, "temperature": temperature, "max_tokens": max_tokens, } for plugin in config.plugins: if plugin.can_handle_chat_completion( messages=prompt.raw(), **chat_completion_kwargs, ): message = plugin.handle_chat_completion( messages=prompt.raw(), **chat_completion_kwargs, ) if message is not None: return message chat_completion_kwargs["api_key"] = config.openai_api_key if config.use_azure: chat_completion_kwargs[ "deployment_id" ] = config.get_azure_deployment_id_for_model(model) if functions: chat_completion_kwargs["functions"] = [ function.__dict__ for function in functions ] logger.debug(f"Function dicts: {chat_completion_kwargs['functions']}") response = iopenai.create_chat_completion( messages=prompt.raw(), **chat_completion_kwargs, ) logger.debug(f"Response: {response}") if hasattr(response, "error"): logger.error(response.error) raise RuntimeError(response.error) first_message = response.choices[0].message content: str | None = first_message.get("content") function_call: OpenAIFunctionCall | None = first_message.get("function_call") for plugin in config.plugins: if not plugin.can_handle_on_response(): continue content = plugin.on_response(content) return ChatModelResponse( model_info=OPEN_AI_CHAT_MODELS[model], content=content, function_call=function_call, ) def check_model( model_name: str, model_type: Literal["smart_llm_model", "fast_llm_model"] ) -> str: """Check if model is available for use. If not, return gpt-3.5-turbo.""" api_manager = ApiManager() models = api_manager.get_models() if any(model_name in m["id"] for m in models): return model_name logger.typewriter_log( "WARNING: ", Fore.YELLOW, f"You do not have access to {model_name}. Setting {model_type} to " f"gpt-3.5-turbo.", ) return "gpt-3.5-turbo"