"""Text processing functions""" import logging from math import ceil from typing import Iterator, Optional, Sequence import spacy import tiktoken from autogpt.config import Config from autogpt.llm.base import ChatSequence from autogpt.llm.providers.openai import OPEN_AI_MODELS from autogpt.llm.utils import count_string_tokens, create_chat_completion logger = logging.getLogger(__name__) def batch(iterable: Sequence, max_batch_length: int, overlap: int = 0): """Batch data from iterable into slices of length N. The last batch may be shorter.""" # batched('ABCDEFG', 3) --> ABC DEF G if max_batch_length < 1: raise ValueError("n must be at least one") for i in range(0, len(iterable), max_batch_length - overlap): yield iterable[i : i + max_batch_length] def _max_chunk_length(model: str, max: Optional[int] = None) -> int: model_max_input_tokens = OPEN_AI_MODELS[model].max_tokens - 1 if max is not None and max > 0: return min(max, model_max_input_tokens) return model_max_input_tokens def must_chunk_content( text: str, for_model: str, max_chunk_length: Optional[int] = None ) -> bool: return count_string_tokens(text, for_model) > _max_chunk_length( for_model, max_chunk_length ) def chunk_content( content: str, for_model: str, max_chunk_length: Optional[int] = None, with_overlap=True, ) -> Iterator[tuple[str, int]]: """Split content into chunks of approximately equal token length.""" MAX_OVERLAP = 200 # limit overlap to save tokens if not must_chunk_content(content, for_model, max_chunk_length): yield content, count_string_tokens(content, for_model) return max_chunk_length = max_chunk_length or _max_chunk_length(for_model) tokenizer = tiktoken.encoding_for_model(for_model) tokenized_text = tokenizer.encode(content) total_length = len(tokenized_text) n_chunks = ceil(total_length / max_chunk_length) chunk_length = ceil(total_length / n_chunks) overlap = min(max_chunk_length - chunk_length, MAX_OVERLAP) if with_overlap else 0 for token_batch in batch(tokenized_text, chunk_length + overlap, overlap): yield tokenizer.decode(token_batch), len(token_batch) def summarize_text( text: str, config: Config, instruction: Optional[str] = None, question: Optional[str] = None, ) -> tuple[str, None | list[tuple[str, str]]]: """Summarize text using the OpenAI API Args: text (str): The text to summarize config (Config): The config object instruction (str): Additional instruction for summarization, e.g. "focus on information related to polar bears", "omit personal information contained in the text" question (str): Question to answer in the summary Returns: str: The summary of the text list[(summary, chunk)]: Text chunks and their summary, if the text was chunked. None otherwise. """ if not text: raise ValueError("No text to summarize") if instruction and question: raise ValueError("Parameters 'question' and 'instructions' cannot both be set") model = config.fast_llm if question: instruction = ( f'include any information that can be used to answer the question "{question}". ' "Do not directly answer the question itself" ) summarization_prompt = ChatSequence.for_model(model) token_length = count_string_tokens(text, model) logger.info(f"Text length: {token_length} tokens") # reserve 50 tokens for summary prompt, 500 for the response max_chunk_length = _max_chunk_length(model) - 550 logger.info(f"Max chunk length: {max_chunk_length} tokens") if not must_chunk_content(text, model, max_chunk_length): # summarization_prompt.add("user", text) summarization_prompt.add( "user", "Write a concise summary of the following text" f"{f'; {instruction}' if instruction is not None else ''}:" "\n\n\n" f'LITERAL TEXT: """{text}"""' "\n\n\n" "CONCISE SUMMARY: The text is best summarized as" # "Only respond with a concise summary or description of the user message." ) logger.debug(f"Summarizing with {model}:\n{summarization_prompt.dump()}\n") summary = create_chat_completion( prompt=summarization_prompt, config=config, temperature=0, max_tokens=500 ).content logger.debug(f"\n{'-'*16} SUMMARY {'-'*17}\n{summary}\n{'-'*42}\n") return summary.strip(), None summaries: list[str] = [] chunks = list( split_text( text, for_model=model, config=config, max_chunk_length=max_chunk_length ) ) for i, (chunk, chunk_length) in enumerate(chunks): logger.info( f"Summarizing chunk {i + 1} / {len(chunks)} of length {chunk_length} tokens" ) summary, _ = summarize_text(chunk, config, instruction) summaries.append(summary) logger.info(f"Summarized {len(chunks)} chunks") summary, _ = summarize_text("\n\n".join(summaries), config) return summary.strip(), [ (summaries[i], chunks[i][0]) for i in range(0, len(chunks)) ] def split_text( text: str, for_model: str, config: Config, with_overlap=True, max_chunk_length: Optional[int] = None, ) -> Iterator[tuple[str, int]]: """Split text into chunks of sentences, with each chunk not exceeding the maximum length Args: text (str): The text to split for_model (str): The model to chunk for; determines tokenizer and constraints config (Config): The config object with_overlap (bool, optional): Whether to allow overlap between chunks max_chunk_length (int, optional): The maximum length of a chunk Yields: str: The next chunk of text Raises: ValueError: when a sentence is longer than the maximum length """ max_length = _max_chunk_length(for_model, max_chunk_length) # flatten paragraphs to improve performance text = text.replace("\n", " ") text_length = count_string_tokens(text, for_model) if text_length < max_length: yield text, text_length return n_chunks = ceil(text_length / max_length) target_chunk_length = ceil(text_length / n_chunks) nlp: spacy.language.Language = spacy.load(config.browse_spacy_language_model) nlp.add_pipe("sentencizer") doc = nlp(text) sentences = [sentence.text.strip() for sentence in doc.sents] current_chunk: list[str] = [] current_chunk_length = 0 last_sentence = None last_sentence_length = 0 i = 0 while i < len(sentences): sentence = sentences[i] sentence_length = count_string_tokens(sentence, for_model) expected_chunk_length = current_chunk_length + 1 + sentence_length if ( expected_chunk_length < max_length # try to create chunks of approximately equal size and expected_chunk_length - (sentence_length / 2) < target_chunk_length ): current_chunk.append(sentence) current_chunk_length = expected_chunk_length elif sentence_length < max_length: if last_sentence: yield " ".join(current_chunk), current_chunk_length current_chunk = [] current_chunk_length = 0 if with_overlap: overlap_max_length = max_length - sentence_length - 1 if last_sentence_length < overlap_max_length: current_chunk += [last_sentence] current_chunk_length += last_sentence_length + 1 elif overlap_max_length > 5: # add as much from the end of the last sentence as fits current_chunk += [ list( chunk_content( last_sentence, for_model, overlap_max_length, ) ).pop()[0], ] current_chunk_length += overlap_max_length + 1 current_chunk += [sentence] current_chunk_length += sentence_length else: # sentence longer than maximum length -> chop up and try again sentences[i : i + 1] = [ chunk for chunk, _ in chunk_content(sentence, for_model, target_chunk_length) ] continue i += 1 last_sentence = sentence last_sentence_length = sentence_length if current_chunk: yield " ".join(current_chunk), current_chunk_length