from __future__ import annotations from typing import List, Literal, Optional from colorama import Fore from autogpt.config import Config from ..api_manager import ApiManager from ..base import ( ChatModelResponse, ChatSequence, FunctionCallDict, Message, ResponseMessageDict, ) from ..providers import openai as iopenai from ..providers.openai import ( OPEN_AI_CHAT_MODELS, OpenAIFunctionCall, OpenAIFunctionSpec, count_openai_functions_tokens, ) from .token_counter import * def call_ai_function( function: str, args: list, description: str, config: Config, model: Optional[str] = None, ) -> str: """Call an AI function This is a magic function that can do anything with no-code. See https://github.com/Torantulino/AI-Functions for more info. Args: function (str): The function to call args (list): The arguments to pass to the function description (str): The description of the function model (str, optional): The model to use. Defaults to None. Returns: str: The response from the function """ if model is None: model = config.smart_llm # For each arg, if any are None, convert to "None": args = [str(arg) if arg is not None else "None" for arg in args] # parse args to comma separated string arg_str: str = ", ".join(args) prompt = ChatSequence.for_model( model, [ Message( "system", f"You are now the following python function: ```# {description}" f"\n{function}```\n\nOnly respond with your `return` value.", ), Message("user", arg_str), ], ) return create_chat_completion(prompt=prompt, temperature=0, config=config).content def create_text_completion( prompt: str, config: Config, model: Optional[str], temperature: Optional[float], max_output_tokens: Optional[int], ) -> str: if model is None: model = config.fast_llm if temperature is None: temperature = config.temperature kwargs = {"model": model} kwargs.update(config.get_openai_credentials(model)) response = iopenai.create_text_completion( prompt=prompt, **kwargs, temperature=temperature, max_tokens=max_output_tokens, ) logger.debug(f"Response: {response}") return response.choices[0].text # Overly simple abstraction until we create something better def create_chat_completion( prompt: ChatSequence, config: Config, functions: Optional[List[OpenAIFunctionSpec]] = None, model: Optional[str] = None, temperature: Optional[float] = None, max_tokens: Optional[int] = None, ) -> ChatModelResponse: """Create a chat completion using the OpenAI API Args: messages (List[Message]): The messages to send to the chat completion model (str, optional): The model to use. Defaults to None. temperature (float, optional): The temperature to use. Defaults to 0.9. max_tokens (int, optional): The max tokens to use. Defaults to None. Returns: str: The response from the chat completion """ if model is None: model = prompt.model.name if temperature is None: temperature = config.temperature if max_tokens is None: prompt_tlength = prompt.token_length max_tokens = ( OPEN_AI_CHAT_MODELS[model].max_tokens - prompt_tlength - 1 ) # the -1 is just here because we have a bug and we don't know how to fix it. When using gpt-4-0314 we get a token error. logger.debug(f"Prompt length: {prompt_tlength} tokens") if functions: functions_tlength = count_openai_functions_tokens(functions, model) max_tokens -= functions_tlength logger.debug(f"Functions take up {functions_tlength} tokens in API call") logger.debug( f"{Fore.GREEN}Creating chat completion with model {model}, temperature {temperature}, max_tokens {max_tokens}{Fore.RESET}" ) chat_completion_kwargs = { "model": model, "temperature": temperature, "max_tokens": max_tokens, } for plugin in config.plugins: if plugin.can_handle_chat_completion( messages=prompt.raw(), **chat_completion_kwargs, ): message = plugin.handle_chat_completion( messages=prompt.raw(), **chat_completion_kwargs, ) if message is not None: return message chat_completion_kwargs.update(config.get_openai_credentials(model)) if functions: chat_completion_kwargs["functions"] = [ function.schema for function in functions ] # Print full prompt to debug log logger.debug(prompt.dump()) response = iopenai.create_chat_completion( messages=prompt.raw(), **chat_completion_kwargs, ) logger.debug(f"Response: {response}") if hasattr(response, "error"): logger.error(response.error) raise RuntimeError(response.error) first_message: ResponseMessageDict = response.choices[0].message content: str | None = first_message.get("content") function_call: FunctionCallDict | None = first_message.get("function_call") for plugin in config.plugins: if not plugin.can_handle_on_response(): continue # TODO: function call support in plugin.on_response() content = plugin.on_response(content) return ChatModelResponse( model_info=OPEN_AI_CHAT_MODELS[model], content=content, function_call=OpenAIFunctionCall( name=function_call["name"], arguments=function_call["arguments"] ) if function_call else None, )