diff --git a/requirements.txt b/requirements.txt index 9cfddad6..5bcc7495 100644 --- a/requirements.txt +++ b/requirements.txt @@ -12,4 +12,5 @@ docker duckduckgo-search google-api-python-client #(https://developers.google.com/custom-search/v1/overview) pinecone-client==2.2.1 -redis \ No newline at end of file +redis +orjson \ No newline at end of file diff --git a/scripts/commands.py b/scripts/commands.py index 98be7772..a88ad0ae 100644 --- a/scripts/commands.py +++ b/scripts/commands.py @@ -1,5 +1,6 @@ import browse import json +from memory.local import LocalCache from memory.pinecone import PineconeMemory from memory.redismem import RedisMemory import datetime @@ -55,11 +56,14 @@ def get_command(response): def execute_command(command_name, arguments): if cfg.memory_backend == "pinecone": memory = PineconeMemory(cfg=cfg) - else: + elif cfg.memory_backend == "redis": memory = RedisMemory(cfg=cfg) + else: + memory = LocalCache(cfg=cfg) + try: if command_name == "google": - + # Check if the Google API key is set and use the official search method # If the API key is not set or has only whitespaces, use the unofficial search method if cfg.google_api_key and (cfg.google_api_key.strip() if cfg.google_api_key else None): diff --git a/scripts/config.py b/scripts/config.py index 637c17fd..9afeb1d2 100644 --- a/scripts/config.py +++ b/scripts/config.py @@ -65,10 +65,10 @@ class Config(metaclass=Singleton): self.redis_port = os.getenv("REDIS_PORT") self.redis_password = os.getenv("REDIS_PASSWORD") self.wipe_redis_on_start = os.getenv("WIPE_REDIS_ON_START", "True") == 'True' - self.memory_index = os.getenv("MEMORY_INDEX", 'gpt') + self.memory_index = os.getenv("MEMORY_INDEX", 'auto-gpt') # Note that indexes must be created on db 0 in redis, this is not configureable. - self.memory_backend = os.getenv("MEMORY_BACKEND", 'pinecone') + self.memory_backend = os.getenv("MEMORY_BACKEND", 'local') # Initialize the OpenAI API client openai.api_key = self.openai_api_key diff --git a/scripts/main.py b/scripts/main.py index eecdd7f8..e49f1810 100644 --- a/scripts/main.py +++ b/scripts/main.py @@ -1,6 +1,7 @@ import json import random import commands as cmd +from memory.local import LocalCache from memory.pinecone import PineconeMemory from memory.redismem import RedisMemory import data @@ -287,8 +288,10 @@ user_input = "Determine which next command to use, and respond using the format if cfg.memory_backend == "pinecone": memory = PineconeMemory(cfg) memory.clear() -else: +elif cfg.memory_backend == "redis": memory = RedisMemory(cfg) +else: + memory = LocalCache(cfg) print('Using memory of type: ' + memory.__class__.__name__) diff --git a/scripts/memory/local.py b/scripts/memory/local.py new file mode 100644 index 00000000..fb105224 --- /dev/null +++ b/scripts/memory/local.py @@ -0,0 +1,111 @@ +import dataclasses +import orjson +from typing import Any, List, Optional +import numpy as np +import os +from memory.base import MemoryProviderSingleton, get_ada_embedding + + +EMBED_DIM = 1536 +SAVE_OPTIONS = orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_SERIALIZE_DATACLASS + + +def create_default_embeddings(): + return np.zeros((0, EMBED_DIM)).astype(np.float32) + + +@dataclasses.dataclass +class CacheContent: + texts: List[str] = dataclasses.field(default_factory=list) + embeddings: np.ndarray = dataclasses.field( + default_factory=create_default_embeddings + ) + + +class LocalCache(MemoryProviderSingleton): + + # on load, load our database + def __init__(self, cfg) -> None: + self.filename = f"{cfg.memory_index}.json" + if os.path.exists(self.filename): + with open(self.filename, 'rb') as f: + loaded = orjson.loads(f.read()) + self.data = CacheContent(**loaded) + else: + self.data = CacheContent() + + def add(self, text: str): + """ + Add text to our list of texts, add embedding as row to our + embeddings-matrix + + Args: + text: str + + Returns: None + """ + self.data.texts.append(text) + + embedding = get_ada_embedding(text) + + vector = np.array(embedding).astype(np.float32) + vector = vector[np.newaxis, :] + self.data.embeddings = np.concatenate( + [ + vector, + self.data.embeddings, + ], + axis=0, + ) + + with open(self.filename, 'wb') as f: + out = orjson.dumps( + self.data, + option=SAVE_OPTIONS + ) + f.write(out) + + def clear(self) -> str: + """ + Clears the redis server. + + Returns: A message indicating that the memory has been cleared. + """ + self.data = CacheContent() + return "Obliviated" + + def get(self, data: str) -> Optional[List[Any]]: + """ + Gets the data from the memory that is most relevant to the given data. + + Args: + data: The data to compare to. + + Returns: The most relevant data. + """ + return self.get_relevant(data, 1) + + def get_relevant(self, text: str, k: int) -> List[Any]: + """" + matrix-vector mult to find score-for-each-row-of-matrix + get indices for top-k winning scores + return texts for those indices + Args: + text: str + k: int + + Returns: List[str] + """ + embedding = get_ada_embedding(text) + + scores = np.dot(self.data.embeddings, embedding) + + top_k_indices = np.argsort(scores)[-k:][::-1] + + return [self.data.texts[i] for i in top_k_indices] + + def get_stats(self): + """ + Returns: The stats of the local cache. + """ + return len(self.data.texts), self.data.embeddings.shape diff --git a/scripts/memory/redismem.py b/scripts/memory/redismem.py index 20be4a4e..296d0cce 100644 --- a/scripts/memory/redismem.py +++ b/scripts/memory/redismem.py @@ -4,7 +4,6 @@ import redis from redis.commands.search.field import VectorField, TextField from redis.commands.search.query import Query from redis.commands.search.indexDefinition import IndexDefinition, IndexType -import traceback import numpy as np from memory.base import MemoryProviderSingleton, get_ada_embedding