mirror of
https://github.com/aljazceru/Auto-GPT.git
synced 2025-12-21 16:04:21 +01:00
Feature/llm data structs (#3486)
* Organize all the llm stuff into a subpackage * Add structs for interacting with llms
This commit is contained in:
@@ -4,9 +4,8 @@ from __future__ import annotations
|
||||
from typing import List
|
||||
|
||||
from autogpt.config.config import Config
|
||||
from autogpt.llm import create_chat_completion
|
||||
from autogpt.llm import Message, create_chat_completion
|
||||
from autogpt.singleton import Singleton
|
||||
from autogpt.types.openai import Message
|
||||
|
||||
|
||||
class AgentManager(metaclass=Singleton):
|
||||
|
||||
@@ -1,4 +1,13 @@
|
||||
from autogpt.llm.api_manager import ApiManager
|
||||
from autogpt.llm.base import (
|
||||
ChatModelInfo,
|
||||
ChatModelResponse,
|
||||
EmbeddingModelInfo,
|
||||
EmbeddingModelResponse,
|
||||
LLMResponse,
|
||||
Message,
|
||||
ModelInfo,
|
||||
)
|
||||
from autogpt.llm.chat import chat_with_ai, create_chat_message, generate_context
|
||||
from autogpt.llm.llm_utils import (
|
||||
call_ai_function,
|
||||
@@ -10,6 +19,13 @@ from autogpt.llm.token_counter import count_message_tokens, count_string_tokens
|
||||
|
||||
__all__ = [
|
||||
"ApiManager",
|
||||
"Message",
|
||||
"ModelInfo",
|
||||
"ChatModelInfo",
|
||||
"EmbeddingModelInfo",
|
||||
"LLMResponse",
|
||||
"ChatModelResponse",
|
||||
"EmbeddingModelResponse",
|
||||
"create_chat_message",
|
||||
"generate_context",
|
||||
"chat_with_ai",
|
||||
|
||||
65
autogpt/llm/base.py
Normal file
65
autogpt/llm/base.py
Normal file
@@ -0,0 +1,65 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, TypedDict
|
||||
|
||||
|
||||
class Message(TypedDict):
|
||||
"""OpenAI Message object containing a role and the message content"""
|
||||
|
||||
role: str
|
||||
content: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelInfo:
|
||||
"""Struct for model information.
|
||||
|
||||
Would be lovely to eventually get this directly from APIs, but needs to be scraped from
|
||||
websites for now.
|
||||
|
||||
"""
|
||||
|
||||
name: str
|
||||
prompt_token_cost: float
|
||||
completion_token_cost: float
|
||||
max_tokens: int
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChatModelInfo(ModelInfo):
|
||||
"""Struct for chat model information."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class EmbeddingModelInfo(ModelInfo):
|
||||
"""Struct for embedding model information."""
|
||||
|
||||
embedding_dimensions: int
|
||||
|
||||
|
||||
@dataclass
|
||||
class LLMResponse:
|
||||
"""Standard response struct for a response from an LLM model."""
|
||||
|
||||
model_info: ModelInfo
|
||||
prompt_tokens_used: int = 0
|
||||
completion_tokens_used: int = 0
|
||||
|
||||
|
||||
@dataclass
|
||||
class EmbeddingModelResponse(LLMResponse):
|
||||
"""Standard response struct for a response from an embedding model."""
|
||||
|
||||
embedding: List[float] = field(default_factory=list)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.completion_tokens_used:
|
||||
raise ValueError("Embeddings should not have completion tokens used.")
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChatModelResponse(LLMResponse):
|
||||
"""Standard response struct for a response from an LLM model."""
|
||||
|
||||
content: str = None
|
||||
@@ -5,13 +5,13 @@ from openai.error import RateLimitError
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.llm.api_manager import ApiManager
|
||||
from autogpt.llm.base import Message
|
||||
from autogpt.llm.llm_utils import create_chat_completion
|
||||
from autogpt.llm.token_counter import count_message_tokens
|
||||
from autogpt.logs import logger
|
||||
from autogpt.memory_management.store_memory import (
|
||||
save_memory_trimmed_from_context_window,
|
||||
)
|
||||
from autogpt.types.openai import Message
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
@@ -10,8 +10,8 @@ from openai.error import APIError, RateLimitError, Timeout
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.llm.api_manager import ApiManager
|
||||
from autogpt.llm.base import Message
|
||||
from autogpt.logs import logger
|
||||
from autogpt.types.openai import Message
|
||||
|
||||
|
||||
def retry_openai_api(
|
||||
|
||||
0
autogpt/llm/providers/__init__.py
Normal file
0
autogpt/llm/providers/__init__.py
Normal file
37
autogpt/llm/providers/openai.py
Normal file
37
autogpt/llm/providers/openai.py
Normal file
@@ -0,0 +1,37 @@
|
||||
from autogpt.llm.base import ChatModelInfo, EmbeddingModelInfo
|
||||
|
||||
OPEN_AI_CHAT_MODELS = {
|
||||
"gpt-3.5-turbo": ChatModelInfo(
|
||||
name="gpt-3.5-turbo",
|
||||
prompt_token_cost=0.002,
|
||||
completion_token_cost=0.002,
|
||||
max_tokens=4096,
|
||||
),
|
||||
"gpt-4": ChatModelInfo(
|
||||
name="gpt-4",
|
||||
prompt_token_cost=0.03,
|
||||
completion_token_cost=0.06,
|
||||
max_tokens=8192,
|
||||
),
|
||||
"gpt-4-32k": ChatModelInfo(
|
||||
name="gpt-4-32k",
|
||||
prompt_token_cost=0.06,
|
||||
completion_token_cost=0.12,
|
||||
max_tokens=32768,
|
||||
),
|
||||
}
|
||||
|
||||
OPEN_AI_EMBEDDING_MODELS = {
|
||||
"text-embedding-ada-002": EmbeddingModelInfo(
|
||||
name="text-embedding-ada-002",
|
||||
prompt_token_cost=0.0004,
|
||||
completion_token_cost=0.0,
|
||||
max_tokens=8191,
|
||||
embedding_dimensions=1536,
|
||||
),
|
||||
}
|
||||
|
||||
OPEN_AI_MODELS = {
|
||||
**OPEN_AI_CHAT_MODELS,
|
||||
**OPEN_AI_EMBEDDING_MODELS,
|
||||
}
|
||||
@@ -5,8 +5,8 @@ from typing import List
|
||||
|
||||
import tiktoken
|
||||
|
||||
from autogpt.llm.base import Message
|
||||
from autogpt.logs import logger
|
||||
from autogpt.types.openai import Message
|
||||
|
||||
|
||||
def count_message_tokens(
|
||||
|
||||
@@ -1,9 +0,0 @@
|
||||
"""Type helpers for working with the OpenAI library"""
|
||||
from typing import TypedDict
|
||||
|
||||
|
||||
class Message(TypedDict):
|
||||
"""OpenAI Message object containing a role and the message content"""
|
||||
|
||||
role: str
|
||||
content: str
|
||||
Reference in New Issue
Block a user